Abstract Recent work on non‐conjugated pendant electroactive polymers (NCPEPs) has demonstrated significant impacts of structural parameters such as backbone stereoregularity and the spacer connecting the pendant to the backbone on properties, most notably on charge carrier mobilities. Tuning of the pendant group however has not been reported for stereoregular NCPEPs. Here we present a family of novel isotactic poly((carbazolyl‐alkyl‐triazolyl)methyl methacrylates) (PCzATMMAs) for which the effects of increasing the pendant group from carbazole to 3,6‐bis(4‐(2‐ethylhexyl)thiophen‐2‐yl)‐carbazole were investigated. Based on unsuccessful post‐polymerization functionalization with this extended group via previously reported transesterification and thiol‐ene methodologies, we report functionalization via copper‐catalyzed azide‐alkyne cycloaddition which was demonstrated to be highly effective. The effect of spacer length was also investigated for comparison with previously established effects with alkyl spacers. Within the family of PCzATMMAs, hole mobilities were found to increase with longer spacer length and with thermal annealing. The incorporation of an extended pendant with alkyl solubilizing chains was found to result in a lower hole mobility than the equivalent polymer with an unfunctionalized pendant group. Importantly, the copper catalyzed azide‐alkyne cycloaddition proved to be an effective method of post‐polymerization functionalization for stereoregular NCPEPs when extending beyond a simple carbazole pendant.
more »
« less
Functionalized anthrathienothiophenes: synthesis, properties, and integration into OFETs
For more than two decades, the silylethyne functionalization scheme has been used to induce strong π-stacking interactions in linear acenes and heteroacenes. As part of our efforts to better understand the crystal engineering aspects of silylethyne functionalization, along with an interest in studying the impact of ring topology on the electronic and optical properties of heteroacenes, we describe here the integration of thieno[3,2- b ]thiophene (a non-linear isomer of the well-known anthradithiophene) into our well established crystal engineering scheme. By utilizing the thienothiophene moiety coupled with an asymmetric solubilizing group (isopropenyldiisopropylsilylethyne), we were able to achieve charge carrier mobilities ( μ ) upwards of 0.22 cm 2 V −1 s −1 . Based on their increased stability and promising initial mobilities, the use of this thienothiophene moiety may offer a new approach to the formation of larger heteroacene analogues with more than 5 aromatic rings.
more »
« less
- Award ID(s):
- 1849213
- PAR ID:
- 10410814
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 10
- Issue:
- 39
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 14439 to 14443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The recent observation of unusually high thermal conductivity exceeding 1000 W m−1K−1in single‐crystal boron arsenide (BAs) has led to interest in the potential application of this semiconductor for thermal management. Although both the electron/hole high mobilities have been calculated for BAs, there is a lack of experimental investigation of its electronic properties. Here, a photoluminescence (PL) measurement of single‐crystal BAs at different temperatures and pressures is reported. The measurements reveal an indirect bandgap and two donor–acceptor pair (DAP) recombination transitions. Based on first‐principles calculations and time‐of‐flight secondary‐ion mass spectrometry results, the two DAP transitions are confirmed to originate from Si and C impurities occupying shallow energy levels in the bandgap. High‐pressure PL spectra show that the donor level with respect to the conduction band minimum shrinks with increasing pressure, which affects the release of free carriers from defect states. These findings suggest the possibility of strain engineering of the transport properties of BAs for application in electronic devices.more » « less
-
The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13 C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer ( R 22(8)) hydrogen bonding arrangement. Phases A 2 , B m and E m have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated A s is a mix of five forms, including 27.4% of B m and four novel phases not fully characterized here due to insufficient sample mass. For phases A 2 , B m , E m , and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1 σ level based upon agreement of DFT computed 13 COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters ( i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes of NMR-derived anisotropic displacement ellipsoids for phases with localized OH hydrogens are 4.1 times smaller than those derived from single crystal X-ray diffraction and 1.8 times smaller than the volume of benchmark single crystal neutron diffraction values.more » « less
-
SUMMARY From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end‐point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub‐routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.more » « less
-
Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.more » « less
An official website of the United States government

