skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bactericidal effects of high-energy visible light on common otitis media pathogens
Abstract Aims This study assessed the use of high-energy, visible light on the survival rates of three bacteria commonly found in middle ear infections (i.e. otitis media; Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae). Method and Results Bacteria were cultured and then subjected to a single, 4-h treatment of 405 nm wavelength light at two different intensities. All three bacteria species were susceptible to the light at clinically significant rates (>99.9% reduction). Bacteria were susceptible to the high-energy visible (HEV) light in a dose-dependent manner (lower survival rates with increased intensity and duration of exposure). Conclusions The results suggest that HEV light may provide a non-surgical, non-pharmaceutical approach to the therapeutic treatment of otitis media. Significance an Impact of the Study Given the growing concerns surrounding antibiotic resistance, this study demonstrates a rapid, alternative method for effective inactivation of bacterial pathogens partly responsible for instances of otitis media.  more » « less
Award ID(s):
1849213
PAR ID:
10410895
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Microbiology
Volume:
132
Issue:
3
ISSN:
1364-5072
Page Range / eLocation ID:
1856 to 1865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfactant protein A (SP-A) plays an important role in innate immune response and host defense against various microorganisms through opsonization and complement activation. To investigate the role of SP-A in non-typeable Haemophilus influenzae (NTHi)-induced acute otitis media, this study used wild type C57BL/6 (WT) and SP-A knockout (KO) mice. We divided mice into an infection group in which the middle ear (ME) was injected with NTHi and a control group that received the same treatment using normal saline. Mice were sacrificed on d 1, 3, and 7 after treatment. Temporal bone samples were fixed for histological, cellular, and molecular analyses. Ear washing fluid (EWF) was collected for culture and analyses of pro-inflammatory cytokines and inflammatory cells. SP-A-mediated bacterial aggregation and killing and phagocytosis by macrophages were studied in vitro. SP-A expression was detected in the ME and Eustachian tube mucosa of WT mice but not KO mice. After infection, KO mice showed more severe inflammation evidenced by increased ME mucosal thickness and inflammatory cell infiltration and higher NF-κB activation compared to WT mice. The levels of IL-6 and IL-1β in the EWF of infected KO mice were higher compared to infected WT mice on d 1. Our studies demonstrated that SP-A mediated NTHi aggregation and killing and enhanced bacterial phagocytosis by macrophages in vitro and modulated inflammation of the ME in otitis media in vivo. 
    more » « less
  2. Abstract Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivatePseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilmP. aeruginosaby long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM. 
    more » « less
  3. The presence of middle ear fluid is a key diagnostic marker for two of the most common pediatric ear diseases: acute otitis media and otitis media with effusion. We present an accessible solution that uses speakers and microphones within existing smartphones to detect middle ear fluid by assessing eardrum mobility. We conducted a clinical study on 98 patient ears at a pediatric surgical center. Using leave-one-out cross-validation to estimate performance on unseen data, we obtained an area under the curve (AUC) of 0.898 for the smartphone-based machine learning algorithm. In comparison, commercial acoustic reflectometry, which requires custom hardware, achieved an AUC of 0.776. Furthermore, we achieved 85% sensitivity and 82% specificity, comparable to published performance measures for tympanometry and pneumatic otoscopy. Similar results were obtained when testing across multiple smartphone platforms. Parents of pediatric patients ( n = 25 ears) demonstrated similar performance to trained clinicians when using the smartphone-based system. These results demonstrate the potential for a smartphone to be a low-barrier and effective screening tool for detecting the presence of middle ear fluid. 
    more » « less
  4. Bacteria subjected to antiseptic or antibiotic stress often develop tolerance, a trait that can lead to permanent resistance. To determine whether photodynamic agents could be used to counter tolerance, we evaluated three non-iron hemin analogs (M-PpIX; M = Al, Ga, In) as targeted photosensitizers for antimicrobial photodynamic inactivation (aPDI) following exposure to sublethal H2O2. Al-PpIX is an active producer of ROS whereas Ga- and In-PpIX are more efficient at generating singlet oxygen. Al- and Ga-PpIX are highly potent aPDI agents against S. aureus and methicillin-resistant strains (MRSA) with antimicrobial activity (3-log reduction in colony-forming units) at nanomolar concentrations. The aPDI activities of Al- and Ga-PpIX against S. aureus were tested in the presence of 1 mM H2O2 added at different stages of growth. Bacteria exposed to H2O2 during log-phase growth were less susceptible to aPDI but bacteria treated with H2O2 in their postgrowth phase exhibited aPDI hypersensitivity, with no detectable colony growth after treatment with 15 nM Ga-PpIX. 
    more » « less
  5. Abstract Pathogen contamination of water has a massive impact on global human health. In particular, viruses pose unique challenges to water treatment techniques due to their small size and presence in water as both individual virions and when absorbed onto larger particles. Low-energy water treatment processes such as media filtration are not capable of completely removing viruses owing to their small size. Hence, less sustainable processes with high chemical or energy consumption such as chemical disinfection, ultraviolet irradiation, and membrane filtration are usually required. To overcome high energy and/or chemical requirements for virus treatment, designs for sustainable fiber filters fabricated from minimally processed natural materials for efficient virus (MS2) and bacteria (E. coli) removal are presented in this work. These filters were created by functionalizing readily accessible natural fibers including cotton, silk, and flax with a simple aqueous extract containing cationic proteins fromMoringa oleiferaseeds. The proposed filters offer a comprehensive low cost, low energy, and low environmental impact solution for pathogen removal from water with removals of >7log10(99.99999%) for viruses and bacteria. 
    more » « less