skip to main content


Title: Bactericidal effects of high-energy visible light on common otitis media pathogens
Abstract Aims This study assessed the use of high-energy, visible light on the survival rates of three bacteria commonly found in middle ear infections (i.e. otitis media; Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae). Method and Results Bacteria were cultured and then subjected to a single, 4-h treatment of 405 nm wavelength light at two different intensities. All three bacteria species were susceptible to the light at clinically significant rates (>99.9% reduction). Bacteria were susceptible to the high-energy visible (HEV) light in a dose-dependent manner (lower survival rates with increased intensity and duration of exposure). Conclusions The results suggest that HEV light may provide a non-surgical, non-pharmaceutical approach to the therapeutic treatment of otitis media. Significance an Impact of the Study Given the growing concerns surrounding antibiotic resistance, this study demonstrates a rapid, alternative method for effective inactivation of bacterial pathogens partly responsible for instances of otitis media.  more » « less
Award ID(s):
1849213
NSF-PAR ID:
10410895
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Microbiology
Volume:
132
Issue:
3
ISSN:
1364-5072
Page Range / eLocation ID:
1856 to 1865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivatePseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilmP. aeruginosaby long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM.

     
    more » « less
  2. Abstract

    Staphylococcus aureusis a major foodborne bacterial pathogen. Early detection ofS. aureusis crucial to prevent infections and ensure food quality. The iron‐regulated surface determinant protein A (IsdA) ofS. aureusis a unique surface protein necessary for sourcing vital iron from host cells for the survival and colonization of the bacteria. The function, structure, and location of the IsdA protein make it an important protein for biosensing applications relating to the pathogen. Here, we report an in‐silico approach to develop and validate high‐affinity binding aptamers for the IsdA protein detection using custom‐designed in‐silico tools and single‐molecule Fluorescence Resonance Energy Transfer (smFRET) measurements. We utilized in‐silico oligonucleotide screening methods and metadynamics‐based methods to generate 10 aptamer candidates and characterized them based on the Dissociation Free Energy (DFE) of the IsdA‐aptamer complexes. Three of the aptamer candidates were shortlisted for smFRET experimental analysis of binding properties. Limits of detection in the low picomolar range were observed for the aptamers, and the results correlated well with the DFE calculations, indicating the potential of the in‐silico approach to support aptamer discovery.

    This study showcases a computational SELEX method in combination with single‐molecule binding studies deciphering effective aptamers againstS. aureus IsdA, protein. The established approach demonstrates the ability to expedite aptamer discovery that has the potential to cut costs and predict binding efficacy. The application can be extended to designing aptamers for various protein targets, enhancing molecular recognition, and facilitating the development of high‐affinity aptamers for multiple uses.

     
    more » « less
  3. ABSTRACT The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis , have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis . We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism. IMPORTANCE The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se . Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. 
    more » « less
  4. Abstract

    Isolated wetlands embedded within longleaf pine savannas support a high proportion of regional biodiversity including many amphibian species. Today, remnant isolated wetlands are often overgrown and hydrologically altered due to fire exclusion or incompatible, cool season fire regimes. In the absence of warm season fires when wetlands are dry, shrubs and trees succeed herbaceous plants, which alters wetland productivity via effects on light and detritus quality. We used a factorial aquatic mesocosm study to test the effects of altered detritus and shade on the growth, development, and survival of tadpoles of two priority amphibian species: gopher frogs (Rana capito) and ornate chorus frogs (Pseudacris ornata). Gopher frog survival was higher among maidencane, sedge, and pine treatments compared to oak and sweetgum treatments. While gopher frog larval periods were lowest in the sedge treatment, there was a nominal general effect of litter type on gopher frog larval periods, growth rates, and mass at metamorphosis. Shading had a nominal and inconsistent effect on gopher frog growth rates, but did extend larval periods in all litter treatments, decreased survival in all litter treatments except oak, and decreased mass at metamorphosis in all litter treatments except pine and sweetgum. Ornate chorus frog survival was minimally affected by shading and litter treatments, but growth rates and mass at metamorphosis were highest in maidencane and sedge treatments, and larval periods were extended with shading in all litter treatments. Shading also decreased growth rates in maidencane and sedge litters and decreased mass at metamorphosis in pine and sweetgum litters. Our results demonstrate that succession of isolated wetlands can reduce tadpole performance for two priority species both through changes in leaf litter and shading, though the effect on survival, larval growth, larval period, and size at metamorphosis can differ between species. These results support management recommendations to restore and maintain open canopy, grassy conditions in isolated wetlands for conservation of priority amphibian species.

     
    more » « less
  5. Abstract

    Most tundra carbon flux modeling relies on leaf area index (LAI), generally estimated from measurements of canopy greenness using the normalized difference vegetation index (NDVI), to estimate the direction and magnitude of fluxes. However, due to the relative sparseness and low stature of tundra canopies, such models do not explicitly consider the influence of variation in tundra canopy structure on carbon flux estimates. Structure from motion (SFM), a photogrammetric method for deriving three-dimensional (3D) structure from digital imagery, is a non-destructive method for estimating both fine-scale canopy structure and LAI. To understand how variation in 3D canopy structure affects ecosystem carbon fluxes in Arctic tundra, we adapted an existing NDVI-based tundra carbon flux model to include variation in SFM-derived canopy structure and its interaction with incoming sunlight to cast shadows on canopies. Our study system consisted of replicate plots of dry heath tundra that had been subjected to three herbivore exclosure treatments (an exclosure-free control [CT], large mammals exclosure), and a large and small mammal exclosure [ExLS]), providing the range of 3D canopy structures employed in our study. We found that foliage within the more structurally complex surface of CT canopies received significantly less light over the course of the day than canopies within both exclosure treatments. This was especially during morning and evening hours, and was reflected in modeled rates of net ecosystem exchange (NEE) and gross primary productivity (GPP). We found that in the ExLS treatment, SFM-derived estimates of GPP were significantly lower and NEE significantly higher than those based on LAI alone. Our results demonstrate that the structure of even simple tundra vegetation canopies can have significant impacts on tundra carbon fluxes and thus need to be accounted for.

     
    more » « less