skip to main content


This content will become publicly available on May 1, 2024

Title: Salinity Impacts the Functional mcrA and dsrA Gene Abundances in Everglades Marshes
Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community’s composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions. Therefore, tracking the effects of stresses on these populations in freshwater and brackish marshes is critical. The study addressed this by utilizing next generation sequencing (NGS) to construct a baseline soil microbial community. The carbon and sulfur cycles were studied by sequencing a microbial functional gene involved in each process, the mcrA and dsrA functional genes, respectively. Saline was introduced over two years to observe the taxonomic alterations that occurred after a long-term disturbance such as seawater intrusion. It was observed that saltwater dosing increased sulfite reduction in freshwater peat soils and decreased methylotrophy in brackish peat soils. These findings add to the understanding of microbiomes by demonstrating how changes in soil qualities impact communities both before and after a disturbance such as saltwater intrusion.  more » « less
Award ID(s):
2025954
NSF-PAR ID:
10410929
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Microorganisms
Volume:
11
Issue:
5
ISSN:
2076-2607
Page Range / eLocation ID:
1180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management. 
    more » « less
  2. Global sea-level rise is transforming coastal ecosystems, especially freshwater wetlands, in part due to increased episodic or chronic saltwater exposure, leading to shifts in biogeochemistry, plant- and microbial communities, as well as ecological services. Yet, it is still difficult to predict how soil microbial communities respond to the saltwater exposure because of poorly understood microbial sensitivity within complex wetland soil microbial communities, as well as the high spatial and temporal heterogeneity of wetland soils and saltwater exposure. To address this, we first conducted a two-year survey of microbial community structure and bottom water chemistry in submerged surface soils from 14 wetland sites across the Florida Everglades. We identified ecosystem-specific microbial biomarker taxa primarily associated with variation in salinity. Bacterial, archaeal and fungal community composition differed between freshwater, mangrove, and marine seagrass meadow sites, irrespective of soil type or season. Especially, methanogens, putative denitrifying methanotrophs and sulfate reducers shifted in relative abundance and/or composition between wetland types. Methanogens and putative denitrifying methanotrophs declined in relative abundance from freshwater to marine wetlands, whereas sulfate reducers showed the opposite trend. A four-year experimental simulation of saltwater intrusion in a pristine freshwater site and a previously saltwater-impacted site corroborated the highest sensitivity and relative increase of sulfate reducers, as well as taxon-specific sensitivity of methanogens, in response to continuously pulsing of saltwater treatment. Collectively, these results suggest that besides increased salinity, saltwater-mediated increased sulfate availability leads to displacement of methanogens by sulfate reducers even at low or temporal salt exposure. These changes of microbial composition could affect organic matter degradation pathways in coastal freshwater wetlands exposed to sea-level rise, with potential consequences, such as loss of stored soil organic carbon. 
    more » « less
  3. Abstract

    Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.

     
    more » « less
  4. Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process.

     
    more » « less
  5. Abstract

    Climate change is accelerating sea‐level rise and saltwater intrusion in coastal regions world‐wide and interacting with large‐scale changes in species composition in coastal wetlands. Quantifying macrophyte litter breakdown along freshwater‐to‐marine coastal gradients is needed to predict how carbon stores will respond to shifts in both macrophyte communities and water chemistry under changing environmental conditions.

    To test the interactive drivers of changing species identity and water chemistry, we performed a reciprocal transplant of four macrophyte litter species in seven sites along freshwater‐to‐marine gradients in the Florida Coastal Everglades. We measured surface water chemistry (dissolved organic carbon, total nitrogen and total phosphorus), litter chemistry (% nitrogen, % phosphorus, change in N:P molar ratio, % cellulose and % lignin as proxies for recalcitrance) and litter breakdown rates (k/degree‐day).

    Direct effects of salinity and surface water nutrients were the strongest drivers ofk, but unexpectedly, litter chemistry did not correlate with litterk. However, salinity strongly correlated with changes in litter chemistry, whereby litter incubated in brackish and marine wetlands was more labile and gained more phosphorus compared with litter in freshwater marshes. Our results suggest that litterkin coastal wetlands is explained by species‐specific interactions among water and litter chemistries. Water nutrient availability was an important predictor of breakdown rates across species, but breakdown rates were only explained by the carbon recalcitrance of litter in the species with the slowest breakdown (Cladium jamaicense), indicating the importance of carbon structure, and species identity on breakdown rates.

    Synthesis. In oligotrophic ecosystems, nutrients are often the primary driver of organic matter breakdown. However, we found that variation in macrophyte breakdown rates in oligotrophic coastal wetlands was also explained by salinity and associated seawater chemistry, emphasising the need to understand how saltwater intrusion will alter organic matter processing in wetlands. Our results suggest that marine subsidies associated with sea‐level rise have the potential to accelerate leaf litter breakdown. The increase in breakdown rates could either be buffered or increase further as sea‐level rise also shifts macrophyte community composition to more or less recalcitrant species.

     
    more » « less