skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An algebra of observables for de Sitter space
A bstract We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II 1 . There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II 1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S gen = ( A/ 4 G N ) + S out . An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II 1 algebra.  more » « less
Award ID(s):
1911298
PAR ID:
10411140
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Recently Leutheusser and Liu [1, 2] identified an emergent algebra of Type III 1 in the operator algebra of $$ \mathcal{N} $$ N = 4 super Yang-Mills theory for large N . Here we describe some 1/ N corrections to this picture and show that the emergent Type III 1 algebra becomes an algebra of Type II ∞ . The Type II ∞ algebra is the crossed product of the Type III 1 algebra by its modular automorphism group. In the context of the emergent Type II ∞ algebra, the entropy of a black hole state is well-defined up to an additive constant, independent of the state. This is somewhat analogous to entropy in classical physics. 
    more » « less
  2. A<sc>bstract</sc> We propose an algebra of operators along an observer’s worldline as a background-independent algebra in quantum gravity. In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state. In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results. 
    more » « less
  3. The Goheer–Kleban–Susskind no-go theorem says that the symmetry of de Sitter space is incompatible with finite entropy. The meaning and consequences of the theorem are discussed in light of recent developments in holography and gravitational path integrals. The relation between the GKS theorem, Boltzmann fluctuations, wormholes, and exponentially suppressed non-perturbative phenomena suggests that the classical symmetry between different static patches is broken and that eternal de Sitter space—if it exists at all—is an ensemble average. 
    more » « less
  4. It has been shown that entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion. This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not. Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative quantum gravity do not have a clear physical interpretation. Here we construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states. Conceptually, this Letter begins with the algebra of mass fluctuations around a fixed black hole background, and points out that while this is a type I algebra, it is not a factor and therefore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but not absolute entropies) are well defined. It is then shown that for microcanonical wave functions of mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra Hilbert space that is needed to map one microcanonical window to another using gauge-invariant unitaries. The Letter closes with comments on type II entropy difference in a more general class of states, where the von Neumann entropy difference does not have a physical interpretation, but “one-shot” entropy differences do. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ O that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy. 
    more » « less