skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Hierarchical Design Strategies to Produce Internally Structured Nanofibers
Abstract Nanofibers have attracted significant interest due to their unique properties such as high specific surface area, high aspect ratio, and spatial interconnectivity. Nanofibers can exhibit multifunctional properties and unique opportunities for promising applications in a wide variety of fields. Hierarchical design strategies are being used to prescribe the internal structure of nanofibers, such as core-sheath, concentric layers, particles distributed randomly or on a lattice, and co-continuous network phases. This review presents a comprehensive overview of design strategies being used to produce the next generation of nanofiber systems. It includes a description of nanofiber processing methods and their effects on the nano- and microstructure. Physico-chemical effects, such as self-assembly and phase separation, on the ultimate morphology of fibers made from designed emulsions, polymer blends, and block copolymers, are then described. This review concludes with perspectives on existing challenges and future directions for hierarchical design strategies to produce internally structured nanofibers.  more » « less
Award ID(s):
2011401 2122178
PAR ID:
10411201
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Polymer Reviews
ISSN:
1558-3724
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an effort to develop and design next generation high power target materials for particle physics research, the possibility of fabricating nonwoven metallic or ceramic nanofibers by electrospinning process is explored. A low-cost electrospinning unit is set up for in-house production of various ceramic nanofibers. Yttria-stabilized zirconia nanofibers are successfully fabricated by electrospinning a mixture of zirconium carbonate with high-molecular weight polyvinylpyrrolidone polymer solution. Some of the inherent weaknesses of electrospinning process like thickness of nanofiber mat and slow production rate are overcome by modifying certain parts of electrospinning system and their arrangements to get thicker nanofiber mats of millimeter order at a faster rate. Continuous long nanofibers of about hundred nanometers in diameter are produced and subsequently heat treated to get rid of polymer and allow crystallize zirconia. Specimens were prepared to meet certain minimum physical properties such as thickness, structural integrity, thermal stability, and flexibility. An easy innovative technique based on atomic force microscopy was employed for evaluating mechanical properties of single nanofiber, which were found to be comparable to bulk zirconia. Nanofibers were tested for their high-temperature resistance using an electron beam. It showed resistance to radiation damage when irradiated with 1 MeV Kr2+ ion. Some zirconia nanofibers were also tested under high-intensity pulsed proton beam and maintained their structural integrity. This study shows for the first time that a ceramic nanofiber has been tested under different beams and irradiation condition to qualify their physical properties for practical use as accelerator targets. Advantages and challenges of such nanofibers as potential future targets over bulk material targets are discussed. 
    more » « less
  2. Polymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with in situ observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment. This method produces individual polymer nanofibers with diameters as small as ∼500 nm and lengths extending to millimeters, yielding nanofibers with an aspect ratio of 2000:1. The attachment to the tungsten manipulator ensures accurate transfer of the polymer nanofiber to diverse substrate types as well as fabrication of assembled structures. Our findings provide valuable insights into ultrafine polymer fiber drawing, paving the way for high-precision manipulation 
    more » « less
  3. Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain. 
    more » « less
  4. Strategies to create organized multicomponent nanostructures composed of discrete, self-sorted domains are important for developing materials that mimic the complexity and multifunctionality found in biological systems. These structures can be challenging to achieve due to the required balance of molecular self-recognition and supramolecular attraction needed between the components. Herein, we report a strategy to construct a two-component nanostructure via a hierarchical assembly process whereby two monomeric building blocks undergo self-sorting assembly at the molecular level followed by a supramolecular association to form a nanofiber-wrapped nanotube. The two molecules self-sorted into respective nanofiber and nanotube assemblies, yet assembly of the nanofibers in the presence of the nanotube template allowed for directed integration into a hierarchical multilayer structure via electrostatic interactions. The fiber-wrapped nanotube co-assembly was characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Förster resonance energy transfer (FRET) between the components. Strategies to co-assemble multicomponent nanostructures composed of discrete, spatially sorted domains with controllable higher level interactions will be critical for the development of novel, functionally competent nanomaterials. 
    more » « less
  5. Continuous high‐strength polymer nanofiber yarns can be assembled into textiles suitable for numerous applications that benefit from the high surface‐area‐to‐volume ratio of the component nanofibers. Electrospun nanofibers have been used to make multifiber twisted yarns (MFTYs). Traditionally, electrospun nanoyarns are made using self‐bundling methods or cone spinning. However, these approaches inhibit ordered fiber architecture or postprocessing of filaments prior to yarn fabrication limiting yarn length, uniformity, and mechanical strength. A spinning process utilizing automated parallel track collection is capable of manufacturing MFTYs with microarchitecture control and integration of individual fiber postdrawing prior to yarn assembly. The advantage of this process is the ability to optimize electrospinning parameters, postprocessing parameters, and yarn spinning parameters independently. Polycaprolactone (PCL) fibers are electrospun with various parameters and made into long MFTYs that retain up to 50% of the strength of individual component nanofibers. Mechanical testing shows relationships between spinning parameters and yarn strength. The tenacity of PCL MFTYs exceeds the tenacity of most reported self‐bundled nanofiber yarns by an order of magnitude or more. Thus, the alternative nanoyarn fabrication method presented in this work is able to produce yarns with highly tunable parameters with a significant increase in mechanical strength compared to other electrospun nanoyarns. 
    more » « less