- Award ID(s):
- 1719875
- PAR ID:
- 10411650
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2158-3226
- Page Range / eLocation ID:
- 025314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this work, we investigate the synthesis, along with the structural and magnetic properties, of novel Mn-Co-NiO-based heterostructured nanocrystals (HNCs). The objective is to develop novel, well-structurally ordered inverted antiferromagnetic (AFM) NiO–ferrimagnetic (FiM) spinel phase overgrowth HNCs. Inverted HNCs are particularly promising for magnetic device applications because their magnetic properties are more easily controlled by having well-ordered AFM cores, which can result in magnetic structures having large coercivities, tunable blocking temperatures, and other enhanced magnetic effects. The synthesis of the HNCs is accomplished using a two-step process: In the first step, NiO nanoparticles are synthesized using a thermal decomposition method. Subsequently, Mn-Co overgrowth phases are grown on the NiO nanoparticles via hydrothermal nanophase epitaxy, using a fixed pH level (∼5.3) of the aqueous medium. This pH level was selected based on previous work in our laboratory showing that NiO/Mn 3 O 4 HNCs of constant size have optimal coercivity and exchange bias when synthesized at a pH of 5.0. The crystalline structure and gross morphology of the Mn-Co-NiO-based HNCs have been analyzed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. Analysis using these techniques shows that the HNCs are composed of a NiO core and a CoMn 2 O 4 overgrowth phase. Rietveld refinement of XRD data shows that the NiO core has the rocksalt (Fm[Formula: see text]m) cubic crystal structure and the CoMn 2 O 4 overgrowth has the spinel ( I4 1 / amd) crystal structure. Moreover, an increased relative amount of the CoMn 2 O 4 overgrowth phase is deposited with decreasing NiO core particle size during the synthesis of the HNCs. The results from PPMS magnetization and high-resolution transmission electron microscopy (HRTEM) characterization of the Mn-Co-NiO-based HNCs are discussed herein.more » « less
-
La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 .more » « less
-
Abstract Intrinsic exchange bias is known as the unidirectional exchange anisotropy that emerges in a nominally single-component ferro-(ferri-)magnetic system. In this work, with magnetic and structural characterizations, we demonstrate that intrinsic exchange bias is a general phenomenon in (Ni, Co, Fe)-based spinel oxide films deposited on
-Al2O3(0001) substrates, due to the emergence of a rock-salt interfacial layer consisting of antiferromagnetic CoO from interfacial reconstruction. We show that in Nix Coy Fe3−x −y O4(111)/ -Al2O3(0001) films, intrinsic exchange bias and interfacial reconstruction have consistent dependences on Co concentrationy , while the Ni and Fe concentration appears to be less important. This work establishes a family of intrinsic exchange bias materials with great tunability by stoichiometry and highlights the strategy of interface engineering in controlling material functionalities. -
Abstract In an effort to reconcile the various interpretations for the cation components of the 2
p 3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p 3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p 3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles Nix Co1−x Fe2O4(x = 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles. -
Abstract We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IVO4and YMn3IVO4complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen‐evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin‐state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IVO4complexes and variants with protonated oxo moieties need not be
S =9/2. Desymmetrization of thepseudo ‐C 3‐symmetric Ca(Y)Mn3IVO4core leads to a lowerS =5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and anS =3/2 spin ground state is observed in CaMn3IVO3(OH). Our studies complement the observation that the interconversion between the low‐spin and high‐spin forms of the S2state is pH‐dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin‐state changes.