skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Driver Takeover Intention in Automated Vehicles With Attention-Based CNN Algorithm
In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. Existing models have been developed to predict drivers’ takeover performance in responding to takeover requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of.989, which were found to be substantially higher than other machine learning algorithms. The developed CNN model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles to reduce drivers’ unnecessary takeover behaviors.  more » « less
Award ID(s):
1850002
PAR ID:
10411879
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1607 to 1611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less
  2. Objective This study develops a computational model to predict drivers’ response time and understand the underlying cognitive mechanism for freeway exiting takeovers in conditionally automated vehicles (AVs). Background Previous research has modeled drivers’ takeover response time in emergency scenarios that demand a quick response. However, existing models may not be applicable for scheduled, non-time-critical takeovers as drivers take longer to resume control when there is no time pressure. A model of driver response time in non-time-critical takeovers is lacking. Method A computational cognitive model of driver takeover response time is developed based on Queuing Network-Model Human Processor (QN-MHP) architecture. The model quantifies gaze redirection in response to takeover request (ToR), task prioritization, driver situation awareness, and driver trust to address the complexities of drivers' takeover strategies when sufficient time budget exists. Results Experimental data of a preliminary driving simulator study were used to validate the model. The model accounted for 97% of the experimental takeover response time for freeway exiting. Conclusion The current model can successfully predict drivers’ response time for scheduled, non-time-critical freeway exiting takeovers in conditionally AVs. Application This model can be applied to the human-machine interface design with respect to ToR lead time for enhancing safe freeway exiting takeovers in conditionally AVs. It also provides a foundation for future modeling work towards an integrated driver model of freeway exiting takeover performance. 
    more » « less
  3. Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time. 
    more » « less
  4. Automation misuse and acceptance, influenced by trust, environmental conditions, and confidence, have hindered drivers from fully benefiting from partially automated vehicles. This study investigates how driver trust changes with AV reliance, differences in mental and physiological states, and continuous measures’ effectiveness. The takeover drivers reported lower trust than the non-takeover drivers in all scenarios. Nontakeover drivers’ elevated DLPFC activation aligns with trust networks and emotion regulation. The groups also differed in neural activation preand during scenarios with the takeover group showed more PFC, V2V3, and IFC engagement pre-scenario. Gaze revealed the takeover group fixated more on the AV button or dashboard, indicating readiness to take over, while non-takeover drivers focused on the rearview mirror, reflecting situational awareness. HRV responses showed higher physiological arousal in the takeover group pre-scenario. In summary, our multimodal approach reveals takeover behavior is associated with lower trust, cognitive unloading, increased stress, and anticipatory visual attention. 
    more » « less
  5. Social scientists have argued that autonomous vehicles (AVs) need to act as effective social agents; they have to respond implicitly to other drivers’ behaviors as human drivers would. In this paper, we investigate how contingent driving behavior in AVs influences human drivers’ experiences. We compared three algorithmic driving models: one trained on human driving data that responds to interactions (a familiar contingent behavior) and two artificial models that intend to either always-yield or never-yield regardless of how the interaction unfolds (non-contingent behaviors). Results show a statistically significant relationship between familiar contingent behavior and positive driver experiences, reducing stress while promoting the decisive interactions that mitigate driver hesitance. The direct relationship between familiar contingency and positive experience indicates that AVs should incorporate socially familiar driving patterns through contextually-adaptive algorithms to improve the chances of successful deployment and acceptance in mixed human-AV traffic environments. 
    more » « less