Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators. 
                        more » 
                        « less   
                    
                            
                            Tunable Non-Reciprocal Phase Shifter and Spin-Coated Ferrites for Adaptive Microwave Circuits
                        
                    
    
            Tunable non-reciprocal components with ferrites that can be integrated using a foundry suitable process are key to achieving low-power adaptive microwave circuits. The current state-of-the-art still relies on electrical tuning or resistive absorbers to facilitate unidirectional propagation. Here, we demonstrate a novel process for spin-coating thick films of ferrites without the complexities of vacuum processes or high-temperature annealing. Composites of yttrium iron garnet (YIG) nanoparticles in a matrix spin-on-glass are spin-coated on silicon substrates, and magnetic properties comparable to bulk YIG are obtained in films exceeding 30 microns. We also propose a design for tunable phase shifter based on periodically serrated coplanar waveguide with a YIG cladding. A nonreciprocal phase difference of 20 – 60 degrees is obtained over a tunable band of 550 MHz between 3.85 - 4.4 GHz from a tuning magnetic field of 8 – 40 kA/m. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1719875
- PAR ID:
- 10411974
- Date Published:
- Journal Name:
- 2023 International Microwave and Antenna Symposium (IMAS)
- Page Range / eLocation ID:
- 62 to 65
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Spin-to-charge conversion and the reverse process are now critically important physical processes for a wide range of fundamental and applied studies in spintronics. Here, we experimentally demonstrate effective spin-to-charge conversion in thermally evaporated chromium thin films using the longitudinal spin Seebeck effect (LSSE). We present LSSE results measured near room temperature for Cr films with thicknesses from 2 to 11 nm, deposited at room temperature on bulk polycrystalline yttrium-iron-garnet (YIG) substrates. Comparison of the measured LSSE voltage, [Formula: see text], in Cr to a sputtered Pt film at the same nominal thickness grown on a matched YIG substrate shows that both films show comparably large spin-to-charge conversion. As previously shown for other forms of Cr, the LSSE signal for evaporated Cr/YIG shows the opposite sign compared to Pt, indicating that Cr has a negative spin Hall angle, [Formula: see text]. We also present measured charge resistivity, [Formula: see text], of the same evaporated Cr films on YIG. These values are large compared to Pt and comparable to [Formula: see text]-W at a similar thickness. Non-monotonic behavior of both [Formula: see text] and [Formula: see text] with film thickness suggests that spin-to-charge conversion in evaporated Cr, which we expect has a different strain state than previously investigated sputtered films, could be modified by spin density wave antiferromagnetism in Cr.more » « less
- 
            Abstract Magnetic heterostructures consisting of single‐crystal yttrium iron garnet (YIG) films coated with platinum are widely used in spin‐wave experiments related to spintronic phenomena such as the spin‐transfer‐torque, spin‐Hall, and spin‐Seebeck effects. However, spin waves in YIG/Pt bilayers experience much stronger attenuation than in bare YIG films. For micrometer‐thick YIG films, this effect is caused by microwave eddy currents in the Pt layer. This paper reports that by employing an excitation configuration in which the YIG film faces the metal plate of the microstrip antenna structure, the eddy currents in Pt are shunted and the transmission of the Damon–Eschbach surface spin wave is greatly improved. The reduction in spin‐wave attenuation persists even when the Pt coating is separated from the ground plate by a thin dielectric layer. This makes the proposed excitation configuration suitable for injection of an electric current into the Pt layer and thus for application in spintronics devices. The theoretical analysis carried out within the framework of the electrodynamic approach reveals how the platinum nanolayer and the nearby highly conductive metal plate affect the group velocity and the lifetime of the Damon–Eshbach surface wave and how these two wavelength‐dependent quantities determine the transmission characteristics of the spin‐wave device.more » « less
- 
            For modern switching power supplies, current bulk magnetic materials, such as ferrites or magnetic metal alloys, cannot provide both low loss and high magnetic saturation to function with both high power density and high efficiency at high frequencies (10-100 MHz). Magnetic nanocomposites comprised of a ferrite and magnetic metal alloy provide the opportunity to achieve these desired magnetic properties, but previously investigated thin-film fabrication techniques have difficulty achieving multi-micrometer film thicknesses which are necessary to provide practical magnetic energy storage and power handling. Here, we present a versatile technique to fabricate thick magnetic nanocomposites via a two-step process, consisting of the electrophoretic deposition of an iron oxide nanoparticle phase into a mold on a substrate, followed by electro-infiltration of a nickel matrix. The deposited films are imaged via scanning electron microscopy and energy dispersive X-ray spectroscopy to identify the presence of iron and nickel, confirming the infiltration of the nickel between the iron oxide nanoparticles. A film thickness of ∼7 μm was measured via stylus profilometry. Further confirmation of successful composite formation is obtained with vibrating sample magnetometry, showing the saturation magnetization value of the composite (473 kA/m) falls between that of the iron oxide nanoparticles (280 kA/m) and the nickel matrix (555 kA/m). These results demonstrate the potential of electrophoretic deposition coupled with electro-infiltration to fabricate magnetic nanocomposite films.more » « less
- 
            The atomic structures at epitaxial film–substrate interfaces determine the scalability of thin films and can result in new phenomena. However, it is challenging to control the structure of the interface. In this work, we report the strong tunability of the epitaxial interface of improper ferroelectric hexagonal ferrites deposited on spinel ferrites, achieving the artificial selection of two types of interfaces that are related by a 90° rotation of in-plane epitaxial relations and feature either disordered or hybrid reconstruction. The hybrid-type interface exhibits characteristic structures of both hexagonal ferrites and spinel ferrites, which remove the critical thickness for improper ferroelectricity. This tunable interfacial structure provides critical insight into controlling interfacial clamping to maintain robust improper ferroelectricity at the two-dimensional limit.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    