skip to main content


Title: Executing Microservice Applications on Serverless, Correctly
While serverless platforms substantially simplify the provisioning, configuration, and management of cloud applications, implementing correct services on top of these platforms can present significant challenges to programmers. For example, serverless infrastructures introduce a host of failure modes that are not present in traditional deployments. Individual serverless instances can fail while others continue to make progress, correct but slow instances can be killed by the cloud provider as part of resource management, and providers will often respond to such failures by re-executing requests. For functions with side-effects, these scenarios can create behaviors that are not observable in serverful deployments. In this paper, we propose mu2sls, a framework for implementing microservice applications on serverless using standard Python code with two extra primitives: transactions and asynchronous calls. Our framework orchestrates user-written services to address several challenges, such as failures and re-executions, and provides formal guarantees that the generated serverless implementations are correct. To that end, we present a novel service specification abstraction and formalization of serverless implementations that facilitate reasoning about the correctness of a given application’s serverless implementation. This formalization forms the basis of the mu2sls prototype, which we then use to develop a few real-world microservice applications and show that the performance of the generated serverless implementations achieves significant scalability (3-5× the throughput of a sequential implementation) while providing correctness guarantees in the context of faults, re-execution, and concurrency.  more » « less
Award ID(s):
2124184
NSF-PAR ID:
10412298
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
7
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
367 to 395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as “exactly once” guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  2. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as ``exactly once'' guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  3. Abstract

    Serverless computing is an emerging event‐driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge‐based, Internet of Things (IoT) deployments. In this work, we present STOIC (serverless teleoperable hybrid cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g., GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. We overview the design and implementation of STOIC and empirically evaluate it using real‐world machine learning applications and multitier IoT deployments (edge and cloud). Specifically, we show that STOIC can be used fortrainingimage processing workloads (for object recognition)—once thought too resource‐intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%.

     
    more » « less
  4. Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing, and given the recent advances in big data, machine learning and emerging trends in cloud computing (e.g., serverless [1]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [2] and Amazon Web Services [3]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multi-threaded, multi-user compression as a microservice using FaaM indicates that microservices-based FPGA acceleration can sustain high-performance as compared to a straightforward CPU implementation with minimal to no communication overhead despite the hardware abstraction. 
    more » « less
  5. Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing and given the recent advances in big data and emerging trends in cloud computing (e.g., serverless [18]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [6] and Amazon Web Services [10]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present an ongoing effort to realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multithreaded, multi-user compression as a microservice using the FaaM architecture indicate that microservices-based FPGA acceleration can sustain high-performance compared to straightforward implementation with minimal to no communication overhead despite the hardware abstraction. 
    more » « less