skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of Fv / Fm from Chlorophyll a Fluorescence without Dark Adaptation by an LSSVM Model
Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. Chlorophyll a fluorescence (ChlF) has been widely used to estimate plant photosynthesis and its regulatory mechanisms. The ratio of variable to maximum fluorescence, F v / F m , obtained from a ChlF induction curve, is commonly used to reflect the maximum photochemical quantum yield of photosystem II (PSII), but it is measured after a sample is dark-adapted for a long time, which limits its practical use. In this research, a least-squares support vector machine (LSSVM) model was developed to explore whether F v / F m can be determined from ChlF induction curves measured without dark adaptation. A total of 7,231 samples of 8 different experiments, under diverse conditions, were used to train the LSSVM model. Model evaluation with different samples showed excellent performance in determining F v / F m from ChlF signals without dark adaptation. Computation time for each test sample was less than 4 ms. Further, the prediction performance of test dataset was found to be very desirable: a high correlation coefficient (0.762 to 0.974); a low root mean squared error (0.005 to 0.021); and a residual prediction deviation of 1.254 to 4.933. These results clearly demonstrate that F v / F m , the widely used ChlF induction feature, can be determined from measurements without dark adaptation of samples. This will not only save experiment time but also make F v / F m useful in real-time and field applications. This work provides a high-throughput method to determine the important photosynthetic feature through ChlF for phenotyping plants.  more » « less
Award ID(s):
1903716
PAR ID:
10413422
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Plant Phenomics
Volume:
5
ISSN:
2643-6515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cotton breeding programs have focused on agronomically-desirable traits. Without targeted selection for tolerance to high temperature extremes, cotton will likely be more vulnerable to environment-induced yield loss. Recently-developed methods that couple chlorophyll fluorescence induction measurements with temperature response experiments could be used to identify genotypic variation in photosynthetic thermotolerance of specific photosynthetic processes for field-grown plants. It was hypothesized that diverse cotton genotypes would differ significantly in photosynthetic thermotolerance, specific thylakoid processes would exhibit differential sensitivities to high temperature, and that the most heat tolerant process would exhibit substantial genotypic variation in thermotolerance plasticity. A two-year field experiment was conducted at Tifton and Athens, Georgia, USA. Experiments included 10 genotypes in 2020 and 11 in 2021. Photosynthetic thermotolerance for field-collected leaf samples was assessed by determining the high temperature threshold resulting in a 15% decline in photosynthetic efficiency (T15) for energy trapping by photosystem II (ΦPo), intersystem electron transport (ΦEo), and photosystem I end electron acceptor reduction (ΦRo). Significant genotypic variation in photosynthetic thermotolerance was observed, but the response was dependent on location and photosynthetic parameter assessed. ΦEo was substantially more heat sensitive than ΦPo or ΦRo. Significant genotypic variation in thermotolerance plasticity of ΦEo was also observed. Identifying the weakest link in photosynthetic tolerance to high temperature will facilitate future selection efforts by focusing on the most heat-susceptible processes. Given the genotypic differences in environmental plasticity observed here, future research should evaluate genotypic variation in acclimation potential in controlled environments. 
    more » « less
  2. Abstract We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F1‐region for molecular ion fraction (fm), ion temperature (Ti), and electron temperature (Te). The commonly used “full profile” approach for F1‐region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height forfm,Ti,Te, and ion velocity (Vi) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fittingfm,Ti, andTewithout constraints requires Doppler shift to be accurately determined and the ISS signal‐to‐noise ratio higher than the full‐profile method, simulations show thatTi,Te, andfmcan be recovered within a few percent accuracy with a moderate signal‐to‐noise ratio. We apply the exhaustive search approach to the Arecibo high‐resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height‐independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high‐resolution measurements ofTi,Te,fm,Vi, and electron concentration (Ne) in our approach open new opportunities for synergistic studies of the F1‐region dynamics and chemistry. 
    more » « less
  3. Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, the F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size. 
    more » « less
  4. null (Ed.)
    Single crystals of two new germanates, [(Rb 6 F)(Rb 4 F)][Ge 14 O 32 ] and [(Rb 6 F)(Rb 3.1 Co 0.9 F 0.96 )][Co 3.8 Ge 10.2 O 30 F 2 ], were synthesized via high temperature RbCl/RbF flux growth. Both compounds crystallize in the cubic space group F 4̄3 m and possess the germanium framework of the previously reported salt inclusion material (SIM), [(Cs 6 F)(Cs 3 AgF)][Ge 14 O 32 ], related to the Ge 7 O 16 zeolitic family. These materials demonstrate the ability to accommodate a variety of salt-inclusions, and exhibit chemical flexibility enabling modifications of the framework through incorporation of Co. Alteration of the salt-inclusion led to intrinsic luminescence of [(Rb 6 F)(Rb 4 F)][Ge 14 O 32 ] while modification of the framework resulted in an unanticipated Rb/Co salt/inclusion in [(Rb 6 F)(Rb 3.1 Co 0.9 F 0.96 )][Co 3.8 Ge 10.2 O 30 F 2 ]. Fluorescence measurements were performed on [(Rb 6 F)(Rb 4 F)][Ge 14 O 32 ]. First-principles calculations in the form of density functional theory (DFT) were performed for [(Rb 6 F)(Rb 3.1 Co 0.9 F 0.96 )][Co 3.8 Ge 10.2 O 30 F 2 ] to elucidate its electronic and magnetic properties, and stability at 0 K. 
    more » « less
  5. null (Ed.)
    A series of new Ce( iv ) based fluorides with two different compositions, Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) and Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) were synthesized as high quality single crystals via a mild hydrothermal route. The compounds with the composition Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) crystallize in the hexagonal crystal system with space group P 6 3 / mmc and are isotypic with the uranium analogs, whereas the Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) compounds crystallize in the trigonal space group P 3̄ c 1 and are isotypic with the uranium and thorium analogs Na x MM′ 6 F 30 (M′ = Th, U). The Cs 2 MCe 3 F 16 compounds exhibit a complex 3D crystal structure constructed of edge-sharing cerium trimers, in which all three Ce atoms share a common μ 3 -F unit. The Na 3 MCe 6 F 30 compounds are constructed of edge- and vertex-sharing cerium polyhedra connected to each other to form Ce 6 F 30 6− framework, which can accommodate only relatively smaller trivalent cations (M 3+ = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) as compared to uranium and thorium analogs. Magnetic susceptibility measurements were carried out on the samples of Cs 2 MCe 3 F 16 (M = Ni 2+ and Co 2+ ), which exhibit paramagnetic behavior. 
    more » « less