Generic scaling laws, such as Kolmogorov’s 5/3 law, are milestone achievements of turbulence research in classical fluids. For quantum fluids such as atomic Bose–Einstein condensates, superfluid helium, and superfluid neutron stars, turbulence can also exist in the presence of a chaotic tangle of evolving quantized vortex lines. However, due to the lack of suitable experimental tools to directly probe the vortex-tangle motion, so far little is known about possible scaling laws that characterize the velocity correlations and trajectory statistics of the vortices in quantum-fluid turbulence, i.e., quantum turbulence (QT). Acquiring such knowledge could greatly benefit the development of advanced statistical models of QT. Here we report an experiment where a tangle of vortices in superfluid4He are decorated with solidified deuterium tracer particles. Under experimental conditions where these tracers follow the motion of the vortices, we observed an apparent superdiffusion of the vortices. Our analysis shows that this superdiffusion is not due to Lévy flights, i.e., long-distance hops that are known to be responsible for superdiffusion of random walkers. Instead, a previously unknown power-law scaling of the vortex–velocity temporal correlation is uncovered as the cause. This finding may motivate future research on hidden scaling laws in QT.
more »
« less
Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation
Abstract The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.
more »
« less
- Award ID(s):
- 2100790
- PAR ID:
- 10415389
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.more » « less
-
null (Ed.)Abstract Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87 Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.more » « less
-
The structures of multiply quantized vortices (MQVs) of an equal-population atomic Fermi superfluid in a rotating spherical bubble trap approximated as a thin shell are analyzed by solving the Bogoliubov-de Gennes (BdG) equation throughout the BCS-Bose Einstein condensation (BEC) crossover. Consistent with the Poincare-Hopf theorem, a pair of vortices emerge at the poles of the rotation axis in the presence of azimuthal symmetry, and the compact geometry provides confinement for the MQVs. While the single-vorticity vortex structure is similar to that in a planar geometry, higher-vorticity vortices exhibit interesting phenomena at the vortex center, such as a density peak due to accumulation of a normal Fermi gas and reversed circulation of current due to in-gap states carrying angular momentum, in the BCS regime but not the BEC regime because of the subtle relations between the order parameter and density. The energy spectrum shows the number of the in-gap state branches corresponds to the vorticity of a vortex, and an explanation based on a topological correspondence is provided.more » « less
-
Abstract The present study examines the northern stratosphere during April 2020, when the polar vortex split into two cyclonic vortices during a winter‐early spring period with the strongest ozone depletion on record. We investigate the dynamical evolution leading to the split at middle stratospheric levels, including the fate of fluid parcels on the vortex boundary during its rupture and the distribution of ozone between the vortices resulting from the split. We also illustrate the vertical structure of the vortices after the split. The findings obtained with Lagrangian methods confirm the key role for the split played by a flow with a special configuration of barriers to the motion of parcels. A trajectory analysis clarifies how the ozone distribution between vortices was such that ozone poorest air remained in the main vortex. The offspring vortex had a deep structure from the troposphere and later decayed to vanish by the end of April.more » « less
An official website of the United States government
