skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadcast Approach to Uplink NOMA: Queuing Delay Analysis
Emerging wireless technologies are envisioned to support a variety of applications that require simultaneously maintaining low latency and high reliability. Non-orthogonal multiple access techniques constitute one candidate for grant-free transmission alleviating the signaling requirements for uplink transmissions. In open-loop transmissions over fading channels, in which the transmitters do not have access to the channel state information, the existing approaches are prone to facing frequent outage events. Such outage events lead to repeated re-transmissions of the duplicate information packets, penalizing the latency. This paper proposes a multi-access broadcast approach in which each user splits its information stream into several information layers, each adapted to one possible channel state. This approach facilitates preventing outage events and improves the overall transmission latency. Based on the proposed approach, the average queuing delay of each user is analyzed for different arrival processes at each transmitter. First, for deterministic arrivals, closed-form lower and upper bounds on the average delay are characterized analytically. Secondly, for Poisson arrivals, a closed-form expression for the average delay is delineated using the Pollaczek-Khinchin formula. Based on the established bounds, the proposed approach achieves less average delay than single-layer outage approaches. Under optimal power allocation among the encoded layers, numerical evaluations demonstrate that the proposed approach significantly minimizes average sum delays compared to traditional outage approaches, especially under high arrival rates.  more » « less
Award ID(s):
1933107
PAR ID:
10416902
Author(s) / Creator(s):
; ;  
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
12
ISSN:
1099-4300
Page Range / eLocation ID:
1757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dramatic growth in demand for mobile data service has prompted mobile network operators (MNOs) to explore new spectrum resources in unlicensed bands. MNOs have been recently allowed to extend LTE-based service called LTE-LAA over 5 GHz U-NII bands, currently occupied by Wi-Fi. To support applications with diverse QoS requirements, both LTE and Wi-Fi technologies introduce multiple priority classes with different channel contention parameters for accessing unlicensed bands. How these different priority classes affect the interplay between coexisting LTE and Wi-Fi technologies is still relatively under-explored. In this paper, we develop a simple and efficient framework that helps MNOs assess the fair coexistence between MNOs and Wi-Fi operators with prioritized channel access under the multi-channel setting. We derive an approximated closed-form solution for each MNO to pre-evaluate the probability of successful transmission (PST), average contention delay, and average throughput when adopting different priority classes to serve different traffics. MNOs and Wi-Fi operators can fit our model using measurements collected offline and/or online, and use it to further optimize their systems’ throughput and latency. Our results reveal that PSTs computed with our approximated closed-form model approach those collected from system-level simulations with around 95% accuracy under scenarios of dense network deployment density and high traffic intensity. 
    more » « less
  2. The rapid growth of mobile devices has spurred the development of crowd-learning applications, which rely on users to collect, report and share real-time information. A critical factor of crowd-learning is information freshness, which can be measured by a metric called age-of-information (AoI). Moreover, recent advances in machine learning and abundance of historical data have enabled crowd-learning service providers to make precise predictions on user arrivals, data trends and other predictable information. These developments lead to a fundamental question: Can we improve information freshness with predictions in mobile crowd-learning? In this paper, we show that the answer is affirmative. Specifically, motivated by the age-optimal Round-Robin policy, we propose the so-called “periodic equal spreading” (PES) policy. Under the PES policy, we first reveal a counter-intuitive insight that the frequency of prediction should not be too often in terms of AoI improvement. Further, we analyze the AoI performances of the proposed PES policy and derive upper bounds for the average age under i.i.d. and Markovian arrivals, respectively. In order to evaluate the AoI performance gain of the PES policy, we also derive two closed form expressions for the average age under uncontrolled i.i.d. and Markovian arrivals, which could be of independent interest. Our results in this paper serve as a first building block towards understanding the role of predictions in mobile crowd-learning. 
    more » « less
  3. Channel estimation in rapidly time-varying or short and bursty communication scenarios is costly in terms of both pilot overhead and co-channel interference. In recent work, it was shown that multipath delay-diversity can be exploited to detect multiple co-channel user signals, provided that the relative multipath delays for the different users are distinct, and the two multipath ‘taps’ of each user have roughly commensurate power. These requirements may not hold naturally, however, especially for relatively narrowband or short-range transmissions with small delay spread. As an alternative, this paper advocates using dual antenna transmission in a manner that introduces artificial multipath and tight control of the power of the two channel taps, via baseband processing at the transmitter. The approach enjoys theoretical guarantees and affords simple decoding and accurate synchronization as a side bonus. Similar claims have been previously laid using packet repetition via a single transmit-antenna, but the dual-antenna artificial multipath scheme proposed herein doubles the transmission rate relative to packet repetition. Laboratory experiments using programmable radios are used to demonstrate successful operation of the proposed transmission scheme in practice. 
    more » « less
  4. Performance assessment and optimization for net-works jointly performing caching, computing, and communica-tion (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights. 
    more » « less
  5. Millimeter-wave large-scale antenna systems typically apply hybrid analog-digital precoders to reduce hardware complexity and power consumption. In this paper, we design hybrid precoders for physical-layer security under two types of channel knowledge. With full channel knowledge at transmitter, we provide sufficient conditions on the minimum number of RF chains needed to realize the performance of the fully digital precoding. Then, we design the hybrid precoder to maximize the secrecy rate. By maximizing the average projection between the fully digital precoder and the hybrid precoder, we propose a low-complexity closed-form hybrid precoder. We extend the conventional projected maximum ratio transmission scheme to realize the hybrid precoder. Moreover, we propose an iterative hybrid precoder design to maximize the secrecy rate.With partial channel knowledge at transmitter, we derive a secrecy outage probability upper-bound. The secrecy throughput maximization is converted into a sequence of secrecy outage probability minimization problems. Then, the hybrid precoder is designed to minimize the secrecy outage probability by an iterative hybrid precoder design. Performance results show the proposed hybrid precoders achieve performance close to that of the fully digital precoding at low and moderate signal-to-noise ratios (SNRs), and sometimes at high SNRs depending on the system parameters. 
    more » « less