skip to main content


Title: Towards gas sensing without spectroscopy using mid-infrared optical parametric oscillators

We introduce a method for gas sensing without performing direct spectrum measurement using broadband mid-infrared optical parametric oscillators, and experimentally demonstrate proof-of-concept carbon dioxide sensing.

 
more » « less
Award ID(s):
1846273
NSF-PAR ID:
10417281
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Optical Sensors 2022
Page Range / eLocation ID:
SM1E.1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human mobility modeling has many applications in location-based services, mobile networking, city management, and epidemiology. Previous sensing approaches for human mobility are mainly categorized into two types: stationary sensing systems (e.g., surveillance cameras and toll booths) and mobile sensing systems (e.g., smartphone apps and vehicle tracking devices). However, stationary sensing systems only provide mobility information of human in limited coverage (e.g., camera-equipped roads) and mobile sensing systems only capture a limited number of people (e.g., people using a particular smartphone app). In this work, we design a novel system Mohen to model human mobility with a heterogeneous sensing system. The key novelty of Mohen is to fundamentally extend the sensing coverage of a large-scale stationary sensing system with a small-scale sensing system. Based on the evaluation on data from real-world urban sensing systems, our system outperforms them by 35% and achieves a competitive result to an Oracle method.

     
    more » « less
  2. Abstract

    Wide-scale sensing of natural and human-made events is critical for protecting against environmental disasters and reducing the monetary losses associated with telecommunication service downtime. However, achieving dense sensing coverage is difficult, given the high deployment overhead of modern sensor networks. Here we offer an in-depth exploration of state-of-polarization sensing over fiber-optic networks using unmodified optical transceivers to establish a strong correlation with ground truth distributed acoustic sensing. To validate our sensing methodology, we collect 85 days of polarization and distributed acoustic sensing measurements along two colocated, 50 km fiber-optic cables in Southern California. We then examine how polarization sensing can improve network reliability by accurately modeling overall network health and preemptively detecting traffic loss. Finally, we explore the feasibility of wide-scale seismic monitoring with polarization sensing, showcasing the polarization perturbations following low-intensity earthquakes and the potential to more than double seismic monitoring coverage in Southern California alone.

     
    more » « less
  3. Quorum sensing is a term describing bacterial cell-to-cell communication systems for monitoring and responding to changes in population density. This primer serves as an introduction to the canonical LuxR-LuxI-type quorum sensing circuits common to many species of Gram-negative bacteria. Quorum sensing can synchronize behaviours across a community. Different species employ quorum sensing strategies to control specific behaviours such as bioluminescence, virulence factor production, secondary metabolite production, and biofilm formation.

     
    more » « less
  4. Metal-organic frameworks (MOFs) are highly designable porous materials and are recognized for their exceptional selectivity as chemical sensors. However, they are not always suitable for incorporation with existing sensing platforms, especially sensing modes that rely on electronic changes in the sensing material (e.g., work-function response or conductometric response). One way that MOFs can be utilized is by growing them as a porous membrane on a sensing layer and using the MOF to affect the electronic structure of the sensing layer. In this paper, a proof-of-concept for electronic modulation with MOFs is demonstrated. A PdO nanoparticle sensing layer on a chemical-sensitive field-effect-transistor is made more sensitive to a reducing gas, hydrogen, and less sensitive to oxidizng molecules, like H2S and NO2, by growing a layer of the MOF “ZIF-8” over the nanoparticles. The proposed mechanism is supported by X-ray photoelectron spectroscopy showing that the ZIF-8 membrane partially reduces the PdO sensing layer.

     
    more » « less
  5. We utilize the unique formation dynamics of quadratic cavity solitons for enhanced sensing, experimentally show CO2sensing with high sensitivity and large dynamic range, and present the promising potentials of soliton-enhanced gas sensors.

     
    more » « less