skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Floquet engineering of strongly driven excitons in monolayer tungsten disulfide
Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials.  more » « less
Award ID(s):
2102386
PAR ID:
10417411
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Physics
ISSN:
1745-2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems. 
    more » « less
  2. Excitons in monolayer semiconductors have a large optical transition dipole for strong coupling with light. Interlayer excitons in heterobilayers feature a large electric dipole that enables strong coupling with an electric field and exciton-exciton interaction at the cost of a small optical dipole. We demonstrate the ability to create a new class of excitons in hetero- and homobilayers that combines advantages of monolayer and interlayer excitons, i.e., featuring both large optical and electric dipoles. These excitons consist of an electron confined in an individual layer, and a hole extended in both layers, where the carrier-species–dependent layer hybridization can be controlled through rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of layer-hybridized valley excitons, which can be used for realizing strongly interacting polaritonic gases and optical quantum controls of bidirectional interlayer carrier transfer. 
    more » « less
  3. Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS 2 monolayer and bulk samples as examples, we show that the new method can probe exciton–exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS 2 monolayer is on the order of 10 −18 cm 2 . 
    more » « less
  4. Transition metal dichalcogenides (TMDCs) have garnered considerable interest over the past decade as a class of semiconducting layered materials. Most studies on the carrier dynamics in these materials have focused on the monolayer due to its direct bandgap, strong photoluminescence, and strongly bound excitons. However, a comparative understanding of the carrier dynamics in multilayer (e.g., >10 layers) flakes is still absent. Recent computational studies have suggested that excitons in bulk TMDCs are confined to individual layers, leading to room-temperature stable exciton populations. Using this new context, we explore the carrier dynamics in MoSe2 flakes that are between ∼16 and ∼125 layers thick. We assign the kinetics to exciton–exciton annihilation (EEA) and Shockley–Read–Hall recombination of free carriers. Interestingly, the average observed EEA rate constant (0.003 cm2/s) is nearly independent of flake thickness and 2 orders of magnitude smaller than that of an unencapsulated monolayer (0.33 cm2/s) but very similar to values observed in encapsulated monolayers. Thus, we posit that strong intralayer interactions minimize the effect of layer thickness on recombination dynamics, causing the multilayer to behave like the monolayer and exhibit an apparent EEA rate intrinsic to MoSe2. 
    more » « less
  5. Abstract Two-dimensional (2D) semiconductors are promising candidates for optoelectronic application and quantum information processes due to their inherent out-of-plane 2D confinement. In addition, they offer the possibility of achieving low-dimensional in-plane exciton confinement, similar to zero-dimensional quantum dots, with intriguing optical and electronic properties via strain or composition engineering. However, realizing such laterally confined 2D monolayers and systematically controlling size-dependent optical properties remain significant challenges. Here, we report the observation of lateral confinement of excitons in epitaxially grown in-plane MoSe2quantum dots (~15-60 nm wide) inside a continuous matrix of WSe2monolayer film via a sequential epitaxial growth process. Various optical spectroscopy techniques reveal the size-dependent exciton confinement in the MoSe2monolayer quantum dots with exciton blue shift (12-40 meV) at a low temperature as compared to continuous monolayer MoSe2. Finally, single-photon emission (g2(0) ~ 0.4) was also observed from the smallest dots at 1.6 K. Our study opens the door to compositionally engineered, tunable, in-plane quantum light sources in 2D semiconductors. 
    more » « less