skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biaxial Tensile Prestress and Waveguide Effects on Estimates of the Complex Shear Modulus Using Optical-Based Dynamic Elastography in Plate-Like Soft Tissue Phantoms
Abstract Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions.  more » « less
Award ID(s):
1852691
PAR ID:
10418321
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Engineering and Science in Medical Diagnostics and Therapy
Volume:
6
Issue:
1
ISSN:
2572-7958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions. 
    more » « less
  2. Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article, we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and waveguide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it is measuring is affected by both these material properties and unknown prestress and other boundary conditions? 
    more » « less
  3. Abstract Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko–Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer’s disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,in vivo. 
    more » « less
  4. Abstract White matter (WM) characterization is challenging due to its anisotropic and inhomogeneous microstructure that necessitates multiscale and multi-modality measurements. Shear elastography is one such modality that requires the accurate interpretation of 3D shear strain measurements, which hinge on developing appropriate constitutive tissue models. Finite element methods enable the development of such models by simulating the shear response of representative elemental volumes (REV). We have developed triphasic (axon, myelin, glia), 2D REVs to simulate the influence of the intrinsic viscoelastic property and volume fraction of each phase. This work constitutes the extension of 2D- to 3D-REVs, focusing on the effect of the intrinsic material properties and their 3D representation on the viscoelastic response of the tissue. By lumping the axon and myelin phases, a flexible 3D REV generation and analysis routine is then developed to allow for shear homogenization in both the axial and transverse directions. The 2D and 3D models agree on stress distribution and total deformation when 2D cross-sectional snapshots are compared. We also conclude that the ratio of transverse to axial transverse modulus is larger than one when axon fibers are stiffer than the glial phase. 
    more » « less
  5. Elastography refers to mapping mechanical properties in a material based on measuring wave motion in it using noninvasive optical, acoustic or magnetic resonance imaging methods. For example, increased stiffness will increase wavelength. Stiffness and viscosity can depend on both location and direction. A material with aligned fibers or layers may have different stiffness and viscosity values along the fibers or layers versus across them. Converting wave measurements into a mechanical property map or image is known as reconstruction. To make the reconstruction problem analytically tractable, isotropy and homogeneity are often assumed, and the effects of finite boundaries are ignored. But, infinite isotropic homogeneity is not the situation in most cases of interest, when there are pathological conditions, material faults or hidden anomalies that are not uniformly distributed in fibrous or layered structures of finite dimension. Introduction of anisotropy, inhomogeneity and finite boundaries complicates the analysis forcing the abandonment of analytically-driven strategies, in favor of numerical approximations that may be computationally expensive and yield less physical insight. A new strategy, Transformation Elastography (TE), is proposed that involves spatial distortion in order to make an anisotropic problem become isotropic. The fundamental underpinnings of TE have been proven in forward simulation problems. In the present paper a TE approach to inversion and reconstruction is introduced and validated based on numerical finite element simulations. 
    more » « less