skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography
Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article, we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and waveguide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it is measuring is affected by both these material properties and unknown prestress and other boundary conditions?  more » « less
Award ID(s):
1852691
PAR ID:
10418324
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
151
Issue:
4
ISSN:
0001-4966
Page Range / eLocation ID:
2403 to 2413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions. 
    more » « less
  2. Abstract Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions. 
    more » « less
  3. Elastography refers to mapping mechanical properties in a material based on measuring wave motion in it using noninvasive optical, acoustic or magnetic resonance imaging methods. For example, increased stiffness will increase wavelength. Stiffness and viscosity can depend on both location and direction. A material with aligned fibers or layers may have different stiffness and viscosity values along the fibers or layers versus across them. Converting wave measurements into a mechanical property map or image is known as reconstruction. To make the reconstruction problem analytically tractable, isotropy and homogeneity are often assumed, and the effects of finite boundaries are ignored. But, infinite isotropic homogeneity is not the situation in most cases of interest, when there are pathological conditions, material faults or hidden anomalies that are not uniformly distributed in fibrous or layered structures of finite dimension. Introduction of anisotropy, inhomogeneity and finite boundaries complicates the analysis forcing the abandonment of analytically-driven strategies, in favor of numerical approximations that may be computationally expensive and yield less physical insight. A new strategy, Transformation Elastography (TE), is proposed that involves spatial distortion in order to make an anisotropic problem become isotropic. The fundamental underpinnings of TE have been proven in forward simulation problems. In the present paper a TE approach to inversion and reconstruction is introduced and validated based on numerical finite element simulations. 
    more » « less
  4. null (Ed.)
    It is important to understand mechanical anisotropy in fibrous soft tissues because of the relationship of anisotropy to tissue function, and because anisotropy may change due to injury and disease. We have developed a method to noninvasively investigate anisotropy, based on MR imaging of harmonic ultrasound-induced motion (MR-HUM), using focused ultrasound (FUS) and magnetic resonance elastography (MRE). MR-HUM produces symmetric, radial waves inside a tissue, which enables a simple assessment of anisotropy using features of the resulting shear wave fields. This method was applied to characterize ex vivo muscle tissue, which is known to exhibit mechanical anisotropy. Finite element (FE) simulations of the experiment were performed to illustrate and validate the approach. Anisotropy was characterized by ratios of apparent shear moduli and strain components in different directions. 
    more » « less
  5. Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle. 
    more » « less