Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization—an algorithmic scheme that encourages exploration—and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly—even quadratically, once it enters a local region around the optimal policy—when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates and shed light upon the role of entropy regularization in enabling fast convergence.
more »
« less
Geometry and convergence of natural policy gradient methods
Abstract We study the convergence of several natural policy gradient (NPG) methods in infinite-horizon discounted Markov decision processes with regular policy parametrizations. For a variety of NPGs and reward functions we show that the trajectories in state-action space are solutions of gradient flows with respect to Hessian geometries, based on which we obtain global convergence guarantees and convergence rates. In particular, we show linear convergence for unregularized and regularized NPG flows with the metrics proposed by Kakade and Morimura and co-authors by observing that these arise from the Hessian geometries of conditional entropy and entropy respectively. Further, we obtain sublinear convergence rates for Hessian geometries arising from other convex functions like log-barriers. Finally, we interpret the discrete-time NPG methods with regularized rewards as inexact Newton methods if the NPG is defined with respect to the Hessian geometry of the regularizer. This yields local quadratic convergence rates of these methods for step size equal to the inverse penalization strength.
more »
« less
- Award ID(s):
- 2145630
- PAR ID:
- 10418430
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Information Geometry
- Volume:
- 7
- Issue:
- S1
- ISSN:
- 2511-2481
- Format(s):
- Medium: X Size: p. 485-523
- Size(s):
- p. 485-523
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence RateSecond-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second order updates within a lower-dimensional subspace, giving rise to \textit{subspace second-order} methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $$d$$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $$\bigO\left(\frac{1}{mk}+\frac{1}{k^2}\right)$$ for solving convex optimization problems. Here, $$m$$ represents the subspace dimension, which can be significantly smaller than $$d$$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the \emph{Krylov subspace} associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems.more » « less
-
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)Federated reinforcement learning (FedRL) enables agents to collaboratively train a global policy without sharing their individual data. However, high communication overhead remains a critical bottleneck, particularly for natural policy gradient (NPG) methods, which are second-order. To address this issue, we propose the FedNPG-ADMM framework, which leverages the alternating direction method of multipliers (ADMM) to approximate global NPG directions efficiently. We theoretically demonstrate that using ADMM-based gradient updates reduces communication complexity from $O(d^2)$ to $O(d)$ at each iteration, where $$d$$ is the number of model parameters. Furthermore, we show that achieving an $$\epsilon$$-error stationary convergence requires $$O(\frac{1}{(1-\gamma)^2-\epsilon})$$ iterations for discount factor $$\gamma$$, demonstrating that FedNPG-ADMM maintains the same convergence rate as standard FedNPG. Through evaluation of the proposed algorithms in MuJoCo environments, we demonstrate that FedNPG-ADMM maintains the reward performance of standard FedNPG, and that its convergence rate improves when the number of federated agents increases.more » « less
-
Stochastic second-order methods are known to achieve fast local convergence in strongly convex optimization by relying on noisy Hessian estimates to precondition the gradient. Yet, most of these methods achieve superlinear convergence only when the stochastic Hessian noise diminishes, requiring an increase in the per-iteration cost as time progresses. Recent work in \cite{na2022hessian} addressed this issue via a Hessian averaging scheme that achieves a superlinear convergence rate without increasing the per-iteration cost. However, the considered method exhibits a slow global convergence rate, requiring up to ~O(κ^2) iterations to reach the superlinear rate of ~O((1/t)^{t/2}), where κ is the problem's condition number. In this paper, we propose a novel stochastic Newton proximal extragradient method that significantly improves these bounds, achieving a faster global linear rate and reaching the same fast superlinear rate in ~O(κ) iterations. We achieve this by developing a novel extension of the Hybrid Proximal Extragradient (HPE) framework, which simultaneously achieves fast global and local convergence rates for strongly convex functions with access to a noisy Hessian oracle.more » « less
-
We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of m reference measures given a set of coefficients belonging to the m-dimensional simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure μ. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of regularized barycenters as solutions to a fixed-point equation for the average of the entropic maps from the barycenter to the reference measures. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when μ is a barycenter. It is shown that these coordinates, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, a hallmark of entropy-regularized optimal transport, and we verify these rates experimentally. We also establish that barycentric coordinates are stable with respect to perturbations in the Wasserstein-2 metric, suggesting a robustness of these coefficients to corruptions. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.more » « less
An official website of the United States government
