Abstract We analyze the directional dependence of the gravitational wave (GW) emission from 15 3D neutrino radiation hydrodynamic simulations of core-collapse supernovae (CCSNe). Using spin weighted spherical harmonics, we develop a new analytic technique to quantify the evolution of the distribution of GW emission over all angles. We construct a physics-informed toy model that can be used to approximate GW distributions for general ellipsoid-like systems, and use it to provide closed form expressions for the distribution of GWs for different CCSN phases. Using these toy models, we approximate the protoneutron star (PNS) dynamics during multiple CCSN stages and obtain similar GW distributions to simulation outputs. When considering all viewing angles, we apply this new technique to quantify the evolution of preferred directions of GW emission. For nonrotating cases, this dominant viewing angle drifts isotropically throughout the supernova, set by the dynamical timescale of the PNS. For rotating cases, during core bounce and the following tens of milliseconds, the strongest GW signal is observed along the equator. During the accretion phase, comparable—if not stronger—GW amplitudes are generated along the axis of rotation, which can be enhanced by the lowT/∣W∣ instability. We show two dominant factors influencing the directionality of GW emission are the degree of initial rotation and explosion morphology. Lastly, looking forward, we note the sensitive interplay between GW detector site and supernova orientation, along with its effect on detecting individual polarization modes. 
                        more » 
                        « less   
                    
                            
                            Three approaches for the classification of protoneutron star oscillation modes
                        
                    
    
            ABSTRACT The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide complementary information that helps to understand the evolution of the modes. In the GCN, we note several avoided crossings as the mode frequencies evolve at early times, while the CBMP tracks the modes across the avoided crossings. We verify that the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region alternates between the core and the envelope at each avoided crossing. At later times, approximately 0.4 s after the bounce, the three classification methods present a similar description of the mode spectrum. We use our results to test universal relations for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is remarkably simple in the CBMP. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10418492
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 523
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2236-2246
- Size(s):
- p. 2236-2246
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the non-radial oscillation modes of strange quark stars with a homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses, we identify the high-frequency l=2 spheroidal (f, p) in Newtonian gravity, using the Cowling approximation. The results are compared to the case of homogeneous compact stars such as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity overestimates the mode frequencies of the strange star, as is the case for neutron stars.more » « less
- 
            Abstract Relativistic jets from a Kerr black hole (BH) following the core collapse of a massive star (“collapsar”) is a leading model for gamma-ray bursts (GRBs). However, the two key ingredients for a Blandford–Znajek-powered jet—rapid rotation and a strong magnetic field—seem mutually exclusive. Strong fields in the progenitor star’s core transport angular momentum outward more quickly, slowing down the core before collapse. Through innovative multidisciplinary modeling, we first use MESA stellar evolution models followed to core collapse to explicitly show that the small length scale of the instabilities—likely responsible for angular momentum transport in the core (e.g., Tayler–Spruit)—results in a lownetmagnetic flux fed to the BH horizon, far too small to power GRB jets. Instead, we propose a novel scenario in which collapsar BHs acquire their magnetic “hair” from their progenitor proto–neutron star (PNS), which is likely highly magnetized from an internal dynamo. We evaluate the conditions for the BH accretion disk to pin the PNS magnetosphere to its horizon immediately after the collapse. Our results show that the PNS spin-down energy released before collapse matches the kinetic energy of Type Ic-BL supernovae, while the nascent BH’s spin and magnetic flux produce jets consistent with observed GRB characteristics. We map our MESA models to 3D general-relativistic magnetohydrodynamic simulations and confirm that accretion disks confine the strong magnetic flux initiated near a rotating BH, enabling the launch of successful GRB jets, whereas a slower-spinning BH or one without a disk fails to do so.more » « less
- 
            Abstract We explore the effects of rapid rotation on the properties of neutrino-heated winds from proto-neutron stars (PNS) formed in core-collapse supernovae or neutron-star mergers by means of three-dimensional general-relativistic hydrodynamical simulations with M0 neutrino transport. We focus on conditions characteristic of a few seconds into the PNS cooling evolution when the neutrino luminosities obey erg s−1, and over which most of the wind mass loss will occur. After an initial transient phase, all of our models reach approximately steady-state outflow solutions with positive energies and sonic surfaces captured on the computational grid. Our nonrotating and slower rotating models (angular velocity relative to Keplerian Ω/ΩK≲ 0.4; spin periodP≳ 2 ms) generate approximately spherically symmetric outflows with properties in good agreement with previous PNS wind studies. By contrast, our most rapidly spinning PNS solutions (Ω/ΩK≳ 0.75;P≈ 1 ms) generate outflows focused in the rotational equatorial plane with much higher mass-loss rates (by over an order of magnitude), lower velocities, lower entropy, and lower asymptotic electron fractions, than otherwise similar nonrotating wind solutions. Although such rapidly spinning PNS are likely rare in nature, their atypical nucleosynthetic composition and outsized mass yields could render them important contributors of light neutron-rich nuclei compared to more common slowly rotating PNS birth. Our calculations pave the way to including the combined effects of rotation and a dynamically important large-scale magnetic field on the wind properties within a three-dimensional GRMHD framework.more » « less
- 
            In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
