Abstract Interface‐type (IT) resistive switching (RS) memories are promising for next generation memory and computing technologies owing to the filament‐free switching, high on/off ratio, low power consumption, and low spatial variability. Although the switching mechanisms of memristors have been widely studied in filament‐type devices, they are largely unknown in IT memristors. In this work, using the simple Au/Nb:SrTiO3(Nb:STO) as a model Schottky system, it is identified that protons from moisture are key element in determining the RS characteristics in IT memristors. The Au/Nb:STO devices show typical Schottky interface controlled current–voltage (I–V) curves with a large on/off ratio under ambient conditions. Surprisingly, in a controlled environment without protons/moisture, the largeI–Vhysteresis collapses with the disappearance of a high resistance state (HRS) and the Schottky barrier. Once the devices are re‐exposed to a humid environment, the typical largeI–Vhysteresis can be recovered within hours as the HRS and Schottky interface are restored. The RS mechanism in Au/Nb:STO is attributed to the Schottky barrier modulation by a proton assisted electron trapping and detrapping process. This work highlights the important role of protons/moisture in the RS properties of IT memristors and provides fundamental insight for switching mechanisms in metal oxides‐based memory devices.
more »
« less
An Interface‐Type Memristive Device for Artificial Synapse and Neuromorphic Computing
Interface‐type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament‐type (FT) devices for neuromorphic computing because of their uniform, filament‐free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface‐dominated memristive device is demonstrated using a simple Au/Nb‐doped SrTiO3(Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface‐controlled RS, the proposed device shows low device‐to‐device, cell‐to‐cell, and cycle‐to‐cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next‐generation neuromorphic computing.
more »
« less
- PAR ID:
- 10419029
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 5
- Issue:
- 8
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.more » « less
-
Abstract Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.more » « less
-
Abstract Emerging non-volatile memristor-based devices with resistive switching (RS) materials are being widely researched as promising contenders for the next generation of data storage and neuromorphic technologies. Titanium nitride (TiNx) is a common industry-friendly electrode system for RS; however, the precise TiNxproperties required for optimum RS performance is still lacking. Herein, using ion-assisted DC magnetron sputtering, we demonstrate the key importance not only of engineering the TiNxbottom electrodes to be dense, smooth, and conductive, but also understoichiometric in N. With these properties, RS in HfO2-based memristive devices is shown to be optimised for TiN0.96. These devices have switching voltages ≤ ±1 V with promising device-to-device uniformity, endurance, memory window of ~40, and multiple non-volatile intermediate conductance levels. This study highlights the importance of precise tuning of TiNxbottom electrodes to achieve robust performance of oxide resistive switching materials.more » « less
-
Resistive random-access memories are promising analog synaptic devices for efficient bio-inspired neuromorphic computing arrays. Here we first describe working principles for phase-change random-access memory, oxide random-access memory, and conductive-bridging random-access memory for artificial synapses. These devices could allow for dense and efficient storage of analog synapse connections between CMOS neuron circuits. We also discuss challenges and opportunities for analog synaptic devices toward the goal of realizing passive neuromorphic computing arrays. Finally, we focus on reducing spatial and temporal variations, which is critical to experimentally realize powerful and efficient neuromorphic computing systems.more » « less
An official website of the United States government
