skip to main content

Title: PET‐RAFT Polymerization of Star Polymers with Folded ortho ‐Phenylene Cores

ortho‐Phenylenes are one of the simplest classes of aromatic foldamers, adopting helical geometries because of aromatic stacking interactions. The folding and misfolding ofortho‐phenylenes are slow on the NMR timescale at or below room temperature, allowing detection of folding states using1H NMR spectroscopy. Herein, anortho‐phenylene hexamer is coupled with a RAFT chain transfer agent (CTA) on each repeat unit. A variety of acrylic monomers are polymerized onto the CTA‐functionalizedortho‐phenylene using PET‐RAFT to yield functionalized star polymers withortho‐phenylene cores. The steric bulk of the acrylate monomer units as well as the chain length of each arm of the star polymer is varied.1H NMR spectroscopy shows that the folding of theortho‐phenylenes do not vary, providing a robust helical core for star polymer systems.

more » « less
Award ID(s):
1904236 1919850
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While many foldamer systems reliably fold into well‐defined secondary structures, higher order structure remains a challenge. A simple strategy for the organization of folded subunits in space is to link them together within a macrocycle. Previous work has shown thato‐phenylenes can be co‐assembled with rod‐shaped linkers into twisted macrocycles, showing an interesting synergy between folding and thermodynamically controlled macrocyclization. In these systems the foldamer units were largely decoupled from each other both conformationally and electronically. Here, we show that hydrocarbon macrocycles, with very short ethenylene linkers, can be assembled fromo‐phenylenes using olefin metathesis. Characterization by NMR spectroscopy, X‐ray crystallography, and ab initio calculations shows that the products are approximately triangular trimer macrocycles with helicalo‐phenylene corners in a heterochiral configuration. Their photophysics are dominated by the 4,4'‐diphenylstilbene moieties, the longest conjugated segments, with further conjugation broken by the twisting of theo‐phenylenes.

    more » « less
  2. Abstract

    The fabrication of truly hierarchically folded single‐chain polymeric nanoparticles with primary, secondary, and defined 3D architecture is still an unfulfilled goal. In this contribution, a polymer is reported that folds into a well‐defined 3D structure from a synthetic sheet‐helix block copolymer. The sheet‐like poly(p‐phenylene vinylene) (PPV) block is synthesized via the ring‐opening metathesis polymerization of a thymine‐bearing dialkoxy‐substituted [2.2]paracyclophane‐1,9‐diene. The PPV block is terminated with a Pd complex using a Pd‐containing chain‐terminating agent. The terminal Pd complex catalyzes the polymerization of isocyanide monomers with side‐chains containing either a chiral menthol or an achiral diaminopyridine resulting in the formation of a helical poly(isocyanide) (PIC) random copolymer. The PIC side‐chains are capable of engaging in complementary hydrogen‐bonding with thymine units along the PPV block resulting in the folding of the two secondary structural domains into a well‐defined 3D structure. The folding and unfolding of the polymer in both chloroform and THF are monitored using dynamic light scattering and NMR spectroscopy. This work is the first example of a hierarchically folded synthetic polymer featuring a defined 3D structure achieved by using two different polymer backbones with two distinct secondary structures.

    more » « less
  3. null (Ed.)
    The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho -phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers' conformational energy surfaces. A series of o -phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o -phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2 + 2] and [3 + 3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2 + 2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3 + 3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3 + 3] macrocycle products, even though the structural changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o -phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects. 
    more » « less
  4. We report the first heterotelechelic helical poly(methacrylamide) (PMAc) bearing orthogonal supramolecular binding sites on its chain-ends synthesized through a combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and thiol–bromo “click” chemistry. The heterotelechelic PMAc was assembled with two monotelechelic polymers featuring different secondary structures, namely a coil-like poly(styrene) and a helical poly(isocyanide), resulting in the formation of a coil–helix–helix supramolecular triblock copolymer through orthogonal metal coordination and hydrogen bonding interactions. Triblock assembly was confirmed through 1 H NMR spectroscopy, isothermal titration calorimetry (ITC) and viscometry. The individual polymer blocks retained their secondary structures in the final triblock copolymer, as evidenced by circular dichroism (CD) spectroscopy. Our synthetic strategy expands the toolbox of triblock copolymers featuring structural motifs similar to the ones found in proteins and provides the potential for the development of other complex multifunctional polymeric ensembles. 
    more » « less
  5. Polymer networks crosslinked with spring-like ortho -phenylene ( o P) foldamers were developed. NMR analysis indicated the o P crosslinkers were well-folded. Polymer networks with o P-based crosslinkers showed enhanced energy dissipation and elasticity compared to divinylbenzene crosslinked networks. The energy dissipation was attributed to the strain-induced reversible unfolding of the o P units. Energy dissipation increased with the number of helical turns in the foldamer. 
    more » « less