skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local algorithms for maximum cut and minimum bisection on locally treelike regular graphs of large degree
Abstract Given a graph of degree over vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth , we develop a local message passing algorithm whose complexity is , and that achieves near optimal cut values among all ‐local algorithms. Focusing on max‐cut, the algorithm constructs a cut of value , where is the value of the Parisi formula from spin glass theory, and (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, that is, graphs whose girth becomes after removing a small fraction of vertices. Earlier work established that, for random ‐regular graphs, the typical max‐cut value is . Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max‐cut, and nearly maximum min‐bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near‐Ramanujan property of random regular graphs.  more » « less
Award ID(s):
2006489
PAR ID:
10419858
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
63
Issue:
3
ISSN:
1042-9832
Page Range / eLocation ID:
p. 689-715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k . 
    more » « less
  2. Abstract Let $$\gamma(G)$$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n -vertex graph of minimum degree at least d , then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n -vertex d -regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d . This result is sharp in the sense that as $$d \rightarrow \infty$$ , almost all d -regular n -vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of $${n}/{(2d)}$$ complete bipartite graphs $$K_{d,d}$$ , then $${\gamma_\circ}(G) = \frac{n}{2}$$ . We also prove that there are n -vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that $${\gamma_\circ}(G) \sim {n}/{2}$$ as $$d \rightarrow \infty$$ . Therefore both the girth and regularity conditions are required for the main result. 
    more » « less
  3. We consider the Max-3-Section problem, where we are given an undirected graph G = (V, E) equipped with non-negative edge weights w : E → R+ and the goal is to find a partition of V into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g., Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of 0.795, that improves upon the previous best known approximation of 0.673. The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result. 
    more » « less
  4. We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut. 
    more » « less
  5. We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut. 
    more » « less