Abstract Policymakers everywhere are working to determine the set of restrictions that will effectively contain the spread of COVID-19 without excessively stifling economic activity. We show that publicly available data on human mobility—collected by Google, Facebook, and other providers—can be used to evaluate the effectiveness of non-pharmaceutical interventions (NPIs) and forecast the spread of COVID-19. This approach uses simple and transparent statistical models to estimate the effect of NPIs on mobility, and basic machine learning methods to generate 10-day forecasts of COVID-19 cases. An advantage of the approach is that it involves minimal assumptions about disease dynamics, and requires only publicly-available data. We evaluate this approach using local and regional data from China, France, Italy, South Korea, and the United States, as well as national data from 80 countries around the world. We find that NPIs are associated with significant reductions in human mobility, and that changes in mobility can be used to forecast COVID-19 infections.
more »
« less
Change time estimation uncertainty in nonlinear dynamical systems with applications to COVID‐19
Abstract The impact that each individual non‐pharmaceutical intervention (NPI) had on the spread rate of COVID‐19 is difficult to estimate, since several NPIs were implemented in rapid succession in most countries. In this article, we analyze the detectability of sudden changes in a parameter of nonlinear dynamical systems, which could be used to represent NPIs or mutations of the virus, in the presence of measurement noise. Specifically, by taking an agnostic approach, we provide necessary conditions for when the best possible unbiased estimator is able to isolate the effect of a sudden change in a model parameter, by using the Hammersley–Chapman–Robbins (HCR) lower bound. Several simplifications to the calculation of the HCR lower bound are given, which depend on the amplitude of the sudden change and the dynamics of the system. We further define the concept of the most informative sample based on the largest distance between two output trajectories, which is a good indicator of when the HCR lower bound converges. These results are thereafter used to analyze the susceptible‐infected‐removed model. For instance, we show that performing analysis using the number of recovered/deceased, as opposed to the cumulative number of infected, may be an inferior signal to use since sudden changes are fundamentally more difficult to estimate and seem to require more samples. Finally, these results are verified by simulations and applied to real data from the spread of COVID‐19 in France.
more »
« less
- Award ID(s):
- 2032258
- PAR ID:
- 10419913
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Robust and Nonlinear Control
- Volume:
- 33
- Issue:
- 9
- ISSN:
- 1049-8923
- Format(s):
- Medium: X Size: p. 4732-4760
- Size(s):
- p. 4732-4760
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundNon-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies. MethodsWe integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection. ResultsHere we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader. ConclusionsThe example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.more » « less
-
Background Worldwide, nonpharmacologic interventions (NPIs) have been the main tool used to mitigate the COVID-19 pandemic. This includes social distancing measures (closing businesses, closing schools, and quarantining symptomatic persons) and contacttracing (tracking and following exposed individuals). While preliminary research across the globe has shown these policies to be effective, there is currently a lack of information on the effectiveness of NPIs in the United States. Objective The purpose of this study was to create a granular NPI data set at the county level and then analyze the relationship between NPI policies and changes in reported COVID-19 cases. Methods Using a standardized crowdsourcing methodology, we collected time-series data on 7 key NPIs for 1320 US counties. Results This open-source data set is the largest and most comprehensive collection of county NPI policy data and meets the need for higher-resolution COVID-19 policy data. Our analysis revealed a wide variation in county-level policies both within and among states (P<.001). We identified a correlation between workplace closures and lower growth rates of COVID-19 cases (P=.004). We found weak correlations between shelter-in-place enforcement and measures of Democratic local voter proportion (R=0.21) and elected leadership (R=0.22). Conclusions This study is the first large-scale NPI analysis at the county level demonstrating a correlation between NPIs and decreased rates of COVID-19. Future work using this data set will explore the relationship between county-level policies and COVID-19 transmission to optimize real-time policy formulation.more » « less
-
The estimates of contiguousness parameters of an epidemic have been used for health-related policy and control measures such as non-pharmaceutical control interventions (NPIs). The estimates have varied by demographics, epidemic phase, and geographical region. Our aim was to estimate four contagiousness parameters: basic reproduction number ( R 0 ), contact rate, removal rate, and infectious period of coronavirus disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious, or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December 2021. For reference, we also estimated these parameters for three of COVID-19's most severely affected countries: Brazil, India, and the USA. The basic reproduction number, contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0, 0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55, 0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8 African countries in this study was estimated to be 2.86%. Contact and removal rates among an affected African population were positively and significantly associated with COVID-19 related deaths ( p -value < 0.003). The larger than one estimates of the basic reproductive number in the studies of African countries indicate that COVID-19 was still being transmitted exponentially by the 31 December 2021, though at different rates. The spread was even higher for the three countries with substantial COVID-19 outbreaks. The lower removal rates in the USA, Brazil, and India could be indicative of lower death rates (a proxy for good health systems). Our findings of variation in the estimate of COVID-19 contagiousness parameters imply that countries in the region may implement differential COVID-19 containment measures.more » « less
-
Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general.more » « less
An official website of the United States government
