skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Combinatorial Cut-Toggling Algorithm for Solving Laplacian Systems
Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems of the form 𝐋𝐱 = 𝐛, where 𝐋 is the Laplacian matrix of a weighted graph with weights w(i,j) > 0 on the edges. The solution 𝐱 of the linear system can be interpreted as the potentials of an electrical flow in which the resistance on edge (i,j) is 1/w(i,j). Kelner, Orrechia, Sidford, and Zhu [Kelner et al., 2013] give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles (cycle toggling). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been conjectured to be difficult for dynamic algorithms [Henzinger et al., 2015]. The conjecture implies that the data structure does not have an O(n^{1-ε}) time algorithm for any ε > 0, and thus a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an Õ(m^{1.5}) time cut-toggling algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce the running time to O(m^{1 + ε}) for any ε > 0. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart.  more » « less
Award ID(s):
2007009
PAR ID:
10420889
Author(s) / Creator(s):
; ; ;
Editor(s):
Tauman Kalai, Yael
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
251
ISSN:
1868-8969
Page Range / eLocation ID:
69:1-69:22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems of the form $$\mathbf{L}\mathbf{x} = \mathbf{b}$$, where $$\mathbf{L}$$ is the Laplacian matrix of a weighted graph with weights $w(i,j)>0$ on the edges. The solution $$\mathbf{x}$$ of the linear system can be interpreted as the potentials of an electrical flow in which the resistance on edge $(i,j)$ is $1/w(i,j)$$. Kelner, Orrechia, Sidford, and Zhu \cite{KOSZ13} give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles ({\it cycle toggling}). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by {\it cut toggling}: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been conjectured to be difficult for dynamic algorithms \cite{HKNS15}. The conjecture implies that the data structure does not have an $$O(n^{1-\epsilon})$ time algorithm for any $$\epsilon > 0$$, and thus a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an $$\widetilde{O}(m^{1.5})$$ time cut-toggling algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce the running time to $$O(m^{1 + \epsilon})$$ for any $$\epsilon > 0$$. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart. 
    more » « less
  2. We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is O(ε−1). In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of O 􏰕ε−2/(2+β) log2(ε−1)􏰖, where β ∈ (0, 1] is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with β = 1/2, therefore enjoying a convergence time of O 􏰕ε−4/5 log2(ε−1)􏰖. This result improves upon the O(ε−1) convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm. 
    more » « less
  3. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2. 
    more » « less
  4. Bojanczyk, Mikolaj; Chekuri, Chandra (Ed.)
    Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case. 
    more » « less
  5. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with positive real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph G = (V, E), vertex demands b ∈ R^V such that ∑_{v ∈ V} b(v) = 0, positive edge costs c ∈ R_{≥ 0}^E, and a parameter ε > 0. In O(ε^{-2} m log^{O(1)} n) time, it returns a flow f such that the net flow out of each vertex is equal to the vertex’s demand and the cost of the flow is within a (1 ± ε) factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the Ω(n²) vertex-vertex distances that an approximation of this kind suggests, we also take advantage of the clustering method used in the well-known Thorup-Zwick distance oracle. 
    more » « less