skip to main content

Title: Baryonic imprints on DM haloes: the concentration–mass relation in the C  amels simulations

The physics of baryons in haloes, and their subsequent influence on the total matter phase space, has a rich phenomenology and must be well understood in order to pursue a vast set of questions in both cosmology and astrophysics. We use the Cosmology and Astrophysics with MachinE Learning Simulation (Camels) suite to quantify the impact of four different galaxy formation parameters/processes (as well as two cosmological parameters) on the concentration–mass relation, cvir−Mvir. We construct a simulation-informed non-linear model for concentration as a function of halo mass, redshift, and six cosmological/astrophysical parameters. This is done for two galaxy formation models, IllustrisTNG and Simba, using 1000 simulations of each. We extract the imprints of galaxy formation across a wide range in mass $M_{\rm vir}\in [10^{11}, 10^{14.5}] \, {\rm M}_\odot \, h^{-1}$ and in redshift z ∈ [0, 6] finding many strong mass- and redshift-dependent features. Comparisons between the IllustrisTNG and Simba results show the astrophysical model choices cause significant differences in the mass and redshift dependence of these baryon imprints. Finally, we use existing observational measurements of cvir−Mvir to provide rough limits on the four astrophysical parameters. Our non-linear model is made publicly available and can be used to include Camels-based baryon imprints in any halo model-based analysis.

more » « less
Author(s) / Creator(s):
 ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 3258-3273
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is important to understand the cycle of baryons through the circumgalactic medium (CGM) in the context of galaxy formation and evolution. In this study, we forecast constraints on the feedback processes heating the CGM with current and future Sunyaev–Zeldovich (SZ) observations. To constrain these processes, we use a suite of cosmological simulations, the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). CAMELS varies four different feedback parameters of two previously existing hydrodynamical simulations, IllustrisTNG and SIMBA. We capture the dependences of SZ radial profiles on these feedback parameters with an emulator, calculate their derivatives, and forecast future constraints on these feedback parameters from upcoming experiments. We find that for a galaxy sample similar to what would be obtained with the Dark Energy Spectroscopic Instrument at the Simons Observatory, all four feedback parameters can be constrained (some within the 10% level), indicating that future observations will be able to further restrict the parameter space for these subgrid models. Given the modeled galaxy sample and forecasted errors in this work, we find that the inner SZ profiles contribute more to the constraining power than the outer profiles. Finally, we find that, despite the wide range of parameter variation in active galactic feedback in the CAMELS simulation suite, we cannot reproduce the thermal SZ signal of galaxies selected by the Baryon Oscillation Spectroscopic Survey as measured by the Atacama Cosmology Telescope.

    more » « less
  2. Abstract Recent work has pointed out the potential existence of a tight relation between the cosmological parameter Ω m , at fixed Ω b , and the properties of individual galaxies in state-of-the-art cosmological hydrodynamic simulations. In this paper, we investigate whether such a relation also holds for galaxies from simulations run with a different code that makes use of a distinct subgrid physics: Astrid. We also find that in this case, neural networks are able to infer the value of Ω m with a ∼10% precision from the properties of individual galaxies, while accounting for astrophysics uncertainties, as modeled in Cosmology and Astrophysics with MachinE Learning (CAMELS). This tight relationship is present at all considered redshifts, z ≤ 3, and the stellar mass, the stellar metallicity, and the maximum circular velocity are among the most important galaxy properties behind the relation. In order to use this method with real galaxies, one needs to quantify its robustness: the accuracy of the model when tested on galaxies generated by codes different from the one used for training. We quantify the robustness of the models by testing them on galaxies from four different codes: IllustrisTNG, SIMBA, Astrid, and Magneticum. We show that the models perform well on a large fraction of the galaxies, but fail dramatically on a small fraction of them. Removing these outliers significantly improves the accuracy of the models across simulation codes. 
    more » « less

    Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $(25\, h^{-1}\, {\rm Mpc})^3$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $h\, \mathrm{Mpc}^{-1}$.

    more » « less
  4. Abstract We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny ( 25 h − 1 Mpc ) 3 volumes our models can infer the value of Ω m with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc. 
    more » « less
  5. Abstract

    As the next generation of large galaxy surveys come online, it is becoming increasingly important to develop and understand the machine-learning tools that analyze big astronomical data. Neural networks are powerful and capable of probing deep patterns in data, but they must be trained carefully on large and representative data sets. We present a new “hump” of the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project: CAMELS-SAM, encompassing one thousand dark-matter-only simulations of (100h−1cMpc)3with different cosmological parameters (Ωmandσ8) and run through the Santa Cruz semi-analytic model for galaxy formation over a broad range of astrophysical parameters. As a proof of concept for the power of this vast suite of simulated galaxies in a large volume and broad parameter space, we probe the power of simple clustering summary statistics to marginalize over astrophysics and constrain cosmology using neural networks. We use the two-point correlation, count-in-cells, and void probability functions, and we probe nonlinear and linear scales across 0.68 <R<27h−1cMpc. We find our neural networks can both marginalize over the uncertainties in astrophysics to constrain cosmology to 3%–8% error across various types of galaxy selections, while simultaneously learning about the SC-SAM astrophysical parameters. This work encompasses vital first steps toward creating algorithms able to marginalize over the uncertainties in our galaxy formation models and measure the underlying cosmology of our Universe. CAMELS-SAM has been publicly released alongside the rest of CAMELS, and it offers great potential to many applications of machine learning in astrophysics:

    more » « less