SUMMARY The eruption of the submarine Hunga Tonga-Hunga Haʻapai (Hunga Tonga) volcano on 15 January 2022, was one of the largest volcanic explosions recorded by modern geophysical instrumentation. The eruption was notable for the broad range of atmospheric wave phenomena it generated and for their unusual coupling with the oceans and solid Earth. The event was recorded worldwide across the Global Seismographic Network (GSN) by seismometers, microbarographs and infrasound sensors. The broad-band instrumentation in the GSN allows us to make high fidelity observations of spheroidal solid Earth normal modes from this event at frequencies near 3.7 and 4.4 mHz. Similar normal mode excitations were reported following the 1991 Pinatubo (Volcanic Explosivity Index of 6) eruption and were predicted, by theory, to arise from the excitation of mesosphere-scale acoustic modes of the atmosphere coupling with the solid Earth. Here, we compare observations for the Hunga Tonga and Pinatubo eruptions and find that both strongly excited the solid Earth normal mode 0S29 (3.72 mHz). However, the mean modal amplitude was roughly 11 times larger for the 2022 Hunga Tonga eruption. Estimates of attenuation (Q) for 0S29 across the GSN from temporal modal decay give Q = 332 ± 101, which is higher than estimates of Q for this mode using earthquake data (Q = 186.9 ± 5). Two microbarographs located at regional distances (<1000 km) to the volcano provide direct observations of the fundamental acoustic mode of the atmosphere. These pressure oscillations, first observed approximately 40 min after the onset of the eruption, are in phase with the seismic Rayleigh wave excitation and are recorded only by microbarographs in proximity (<1500 km) to the eruption. We infer that excitation of fundamental atmospheric modes occurs within a limited area close to the site of the eruption, where they excite select solid Earth fundamental spheroidal modes of similar frequencies that are globally recorded and have a higher apparent Q due to the extended duration of atmospheric oscillations.
more »
« less
Earth’s Upper Crust Seismically Excited by Infrasound from the 2022 Hunga Tonga–Hunga Ha’apai Eruption, Tonga
Abstract Records of pressure variations on seismographs were historically considered unwanted noise; however, increased deployments of collocated seismic and acoustic instrumentation have driven recent efforts to use this effect induced by both wind and anthropogenic explosions to invert for near-surface Earth structure. These studies have been limited to shallow structure because the pressure signals have relatively short wavelengths (<∼300 m). However, the 2022 eruption of Hunga Tonga–Hunga Ha’apai (also called “Hunga”) volcano in Tonga generated rare, globally observed, high-amplitude infrasound signals with acoustic wavelengths of tens of kilometers. In this study, we examine the acoustic-to-seismic coupling generated by the Hunga eruption across 82 Global Seismographic Network (GSN) stations and show that ground motion amplitudes are related to upper (0 to ∼5 km) crust material properties. We find high (>0.8) correlations between pressure and vertical component ground motion at 83% of the stations, but only 30% of stations show this on the radial component, likely due to complex tilt effects. We use average elastic properties in the upper 5.2 km from the CRUST1.0 model to estimate vertical seismic/acoustic coupling coefficients (SV/A) across the GSN network and compare these to recorded observations. We exclude many island stations from these comparisons because the 1° resolution of the CRUST1.0 model places a water layer below these stations. Our simple modeling can predict observed SV/A within a factor of 2 for 94% of the 51 non-island GSN stations with high correlations between pressure and ground motion. These results indicate that analysis of acoustic-to-seismic coupling from the eruption could be used to place additional constraints on crustal structure models at stations with collocated seismic and pressure sensors. Ultimately, this could improve tomographic imaging models, which rely on methods that are sensitive to local structure.
more »
« less
- Award ID(s):
- 1847736
- PAR ID:
- 10422138
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 94
- Issue:
- 2A
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 603 to 616
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Key Points The 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption had four episodic seismic subevents with similar waveforms within ∼300 s An unusual upward force jump‐started each subevent A magma hammer explains the force and estimates the subsurface magma mass flux which fits the vent discharge rate based on satellite datamore » « less
-
Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex.more » « less
-
The eruption of the Hunga Tonga–Hunga Ha’apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate.more » « less
-
Tsunamis from volcanic ‘explosive’ eruptions are rare, with the last catastrophic event being Krakatau in 1883 (Verbeek, 1885), during which, tsunamis were generated in the far-field by pressure shock-waves and in the nearfield of the volcano, in the Sunda Straits, by several potential geological mechanisms including pyroclastic flows, ash column, and/or caldera collapse. On 1/22/55, at about 4:15 UTC, a one in 1,000 year eruption of the Hunga Tonga-Hunga Ha’a-pai Volcano (HTHHV), that had started on12/20/21, reached its paroxysm with a series of large underwater explosions, releasing enormous energy (4-18 Mt of TNT), and ejecting a large ash plume 58 km into the stratosphere. We simulate both the near- and far-field tsunami generation from the eruption, but in this paper we focus on analyzing and validating the near-field impact against field data.more » « less
An official website of the United States government

