skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trustworthy Artificial Intelligence for Environmental Sciences: An Innovative Approach for Summer School
Abstract Many of our generation’s most pressing environmental science problems are wicked problems, which means they cannot be cleanly isolated and solved with a single ‘correct’ answer (e.g., Rittel 1973; Wirz 2021). The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) seeks to address such problems by developing synergistic approaches with a team of scientists from three disciplines: environmental science (including atmospheric, ocean, and other physical sciences), AI, and social science including risk communication. As part of our work, we developed a novel approach to summer school, held from June 27-30, 2022. The goal of this summer school was to teach a new generation of environmental scientists how to cross disciplines and develop approaches that integrate all three disciplinary perspectives and approaches in order to solve environmental science problems. In addition to a lecture series that focused on the synthesis of AI, environmental science, and risk communication, this year’s summer school included a unique Trust-a-thon component where participants gained hands-on experience applying both risk communication and explainable AI techniques to pre-trained ML models. We had 677 participants from 63 countries register and attend online. Lecture topics included trust and trustworthiness (Day 1), explainability and interpretability (Day 2), data and workflows (Day 3), and uncertainty quantification (Day 4). For the Trust-a-thon we developed challenge problems for three different application domains: (1) severe storms, (2) tropical cyclones, and (3) space weather. Each domain had associated user persona to guide user-centered development.  more » « less
Award ID(s):
2019758
PAR ID:
10422678
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user‐informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication. 
    more » « less
  2. We conducted mental model interviews in Aotearoa NZ to understand perspectives of uncertainty associated with natural hazards science. Such science contains many layers of interacting uncertainties, and varied understandings about what these are and where they come from creates communication challenges, impacting the trust in, and use of, science. To improve effective communication, it is thus crucial to understand the many diverse perspectives of scientific uncertainty.Participants included hazard scientists (e.g., geophysical, social, and other sciences), professionals with some scientific training (e.g., planners, policy analysts, emergency managers), and lay public participants with no advanced training in science (e.g., journalism, history, administration, art, or other domains). We present a comparative analysis of the mental model maps produced by participants, considering individuals’ levels of training and expertise in, and experience of, science.A qualitative comparison identified increasing map organization with science literacy, suggesting greater science training in, experience with, or expertise in, science results in a more organized and structured mental model of uncertainty. There were also language differences, with lay public participants focused more on perceptions of control and safety, while scientists focused on formal models of risk and likelihood.These findings are presented to enhance hazard, risk, and science communication. It is important to also identify ways to understand the tacit knowledge individuals already hold which may influence their interpretation of a message. The interview methodology we present here could also be adapted to understand different perspectives in participatory and co-development research. 
    more » « less
  3. Abstract Artificial Intelligence applications are rapidly expanding across weather, climate, and natural hazards. AI can be used to assist with forecasting weather and climate risks, including forecasting both the chance that a hazard will occur and the negative impacts from it, which means AI can help protect lives, property, and livelihoods on a global scale in our changing climate. To ensure that we are achieving this goal, the AI must be developed to be trustworthy, which is a complex and multifaceted undertaking. We present our work from the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), where we are taking a convergence research approach. Our work deeply integrates across AI, environmental, and risk communication sciences. This involves collaboration with professional end-users to investigate how they assess the trustworthiness and usefulness of AI methods for forecasting natural hazards. In turn, we use this knowledge to develop AI that is more trustworthy. We discuss how and why end-users may trust or distrust AI methods for multiple natural hazards, including winter weather, tropical cyclones, severe storms, and coastal oceanography. 
    more » « less
  4. The National Science Foundation (NSF) 2018 Materials and Data Science Hackathon (MATDAT18) took place at the Residence Inn Alexandria Old Town/Duke Street, Alexandria, VA over the period May 30–June 1, 2018. This three-day collaborative “hackathon” or “datathon” brought together teams of materials scientists and data scientists to collaboratively engage materials science problems using data science tools. The materials scientists brought a diversity of problems ranging from inorganic material bandgap prediction to acceleration of ab initio molecular dynamics to quantification of aneurysm risk from blood hydrodynamics. The data scientists contributed tools and expertise in areas such as deep learning, Gaussian process regression, and sequential learning with which to engage these problems. Participants lived and worked together, collaboratively “hacked” for several hours per day, delivered introductory, midpoint, and final presentations and were exposed to presentations and informal interactions with NSF personnel. Social events were organized to facilitate interactions between teams. The primary outcomes of the event were to seed new collaborations between materials and data scientists and generate preliminary results. A separate competitive process enabled participants to apply for exploratory funding to continue work commenced at the hackathon. Anonymously surveyed participants reported a high level of satisfaction with the event, with 100% of respondents indicating that their team will continue to work together into the future and 91% reporting intent to submit a white paper for exploratory funding. 
    more » « less
  5. The National Science Foundation (NSF) 2018 Materials and Data Science Hackathon (MATDAT18) took place at the Residence Inn Alexandria Old Town/Duke Street, Alexandria, VA over the period May 30–June 1, 2018. This three-day collaborative “hackathon” or “datathon” brought together teams of materials scientists and data scientists to collaboratively engage materials science problems using data science tools. The materials scientists brought a diversity of problems ranging from inorganic material bandgap prediction to acceleration of ab initio molecular dynamics to quantification of aneurysm risk from blood hydrodynamics. The data scientists contributed tools and expertise in areas such as deep learning, Gaussian process regression, and sequential learning with which to engage these problems. Participants lived and worked together, collaboratively “hacked” for several hours per day, delivered introductory, midpoint, and final presentations and were exposed to presentations and informal interactions with NSF personnel. Social events were organized to facilitate interactions between teams. The primary outcomes of the event were to seed new collaborations between materials and data scientists and generate preliminary results. A separate competitive process enabled participants to apply for exploratory funding to continue work commenced at the hackathon. Anonymously surveyed participants reported a high level of satisfaction with the event, with 100% of respondents indicating that their team will continue to work together into the future and 91% reporting intent to submit a white paper for exploratory funding. 
    more » « less