This data set includes spider abundances recorded on focal trees in a large-scale forest diversity manipulation at the Smithsonian Environmental Research Center in Edgewater, MD, USA. We repeatedly sampled spiders on 540 trees of 15 species planted in single or mixed species combinations (4 or 12) in June and August of 2019 and 2021. We took caterpillar abundance data, measured tree height, and took canopy closure measurements on each tree in 2021. Data associated with the paper: Positive tree diversity effects on arboreal spider abundance are tied to canopy cover in a forest experiment published in Ecology
more »
« less
Positive tree diversity effects on arboreal spider abundance are tied to canopy cover in a forest experiment
Abstract Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large‐scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post‐establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4‐ or 12‐species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.
more »
« less
- PAR ID:
- 10423132
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 8
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tree plantings have the potential to increase species diversity and sequester carbon, yet planting failure and early mortality pose significant barriers to their success. Biodiversity‐ecosystem function theory suggests that diverse tree plantings could improve survival outcomes through either the portfolio or facilitation effect, yet there remain few tests of this hypothesis. Here, we use a large‐scale tree‐diversity experiment (BiodiversiTREE), with monitoring of nearly 8,000 individual trees to test whether (1) tree species diversity increases survival rates, (2) tree diversity stabilizes the risk of planting failure, and/or (3) diversity effects are important relative to other common drivers of seedling mortality (e.g. herbivory and soil moisture). We found that only species identity significantly impacted the likelihood of survival, not plant functional diversity nor plot species richness nor phylogenetic diversity. There were minor effects of elevation and soil moisture on survival, but both explained a very small amount of variation in the data (r2marg ≤ 0.011). Higher tree diversity did, however, strongly reduce variation in survival across plots, with nearly 2‐fold higher coefficients of variation in monocultures (30.4%, 28.4–32.6% 95% bootstrapped confidence interval) compared to 4‐ (16.3%, 13.8–18.7%) and 12‐species plots (12.8%, 10.8–14.7%). Ultimately, our results suggest that employing diverse species can lower the risk of planting failure (i.e. the portfolio effect), but that species selection still plays a large role in early establishment.more » « less
-
Abstract Predators can alter the movement of nutrients through ecosystems by depositing waste products following predation. Whilst the benefits of predator waste for large predators (e.g. bears) or dense accumulations of predators (e.g. seabirds on islands) seem clear, less is known about whether smaller, solitary predators can have measurable effects on local ecosystem processes.In separate experiments with web‐building and wandering spiders, we tested if the presence of predators affected soil nutrient content, soil respiration, soil microbial communities, and plant growth.In the first experiment with black widow spiders, total nitrogen and nitrate were not affected by spider presence, but ammonia and phosphorus were higher from soil under the edge of the spider web than soil away from the spider. Soil respiration and plant growth were both higher in soil collected from under the spider retreat compared with soil collected away from the spider web.In a second experiment with wolf spiders, we tested for interactions between spiders and soil microbial communities. There were positive effects of wolf spider presence on all soil nutrients and there were interactions between spiders and soil type (i.e. field‐collected versus autoclaved) for total carbon, total nitrogen, nitrate, and pH. Spider presence and soil type also affected soil respiration and spider presence had a large effect on the composition of the microbial community of the soil. There were also positive effects of wolf spider presence on plant biomass and plant height, with a significant interaction between spiders and soil type for plant height.Overall, our results show that two spiders with different life histories (i.e. web‐building and wandering) both have significant positive effects on plant growth through the deposition of their waste products. These effects may occur through the direct deposition of nutrients and changes in soil microbial communities. Although, further work is needed to resolve these interactions. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass.more » « less
-
Abstract Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.more » « less
An official website of the United States government
