skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Voltage Stability Assessment of AC/DC Hybrid Microgrid
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.  more » « less
Award ID(s):
2034938
PAR ID:
10423386
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Energies
Volume:
16
Issue:
1
ISSN:
1996-1073
Page Range / eLocation ID:
399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As distributed energy resources (DERs) are widely deployed, DC packetized power microgrids have been considered as a promising solution to incorporate DERs effectively and steadily. In this paper, we consider a DC packetized power microgrid, where the energy is dispatched in the form of power packets with the assist of a power router. However, the benefits of the microgrid can only be realized when energy subscribers (ESs) equipped with DERs actively participate in the energy market. Therefore, peer-to-peer (P2P) energy trading is necessary in the DC packetized power microgrid to encourage the usage of DERs. Different from P2P energy trading in AC microgrids, the dispatching capability of the router needs to be considered in DC microgrids, which will complicate the trading problem. To tackle this challenge, we formulate the P2P trading problem as an auction game, in which the demander ESs submit bids to compete for power packets, and a controller decides the energy allocation and power packet scheduling. Analysis of the proposed scheme is provided, and its effectiveness is validated through simulation. 
    more » « less
  2. This paper investigates integration of distributed energy resources (DERs) in microgrids (MGs) through two-stage power conversion structures consisting of DC-DC boost converter and DC-AC voltage source converter (VSC) subsystems. In contrast to existing investigations that treated DC-link voltage as an ideal constant voltage, this paper considers the non-ideal dynamic coupling between both subsystems for completeness and higher accuracy, which introduces additional DC-side dynamics to the VSC. The analysis shows parameters of the boost converter's power model that impact stability through the DC-link. Carefully selecting these parameters can mitigate this effect on stability and improve dynamic performance across the DC-link. Hence, an optimization framework is developed to facilitate in selecting adequate boost converter parameters in designing a stable voltage source converter-based microgrid (VSC-MG). The developed optimization framework, based on particle swarm optimization, considers dynamic coupling between both subsystems and is also effective in avoiding inadequate boost converter parameters capable of propagating instability through the DC-link to the VSC. Simulations are performed with MATLAB/Simulink to validate theoretical analyses. 
    more » « less
  3. In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any number of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics. 
    more » « less
  4. Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self‐healing capability, real‐time monitoring, advanced two‐way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed. 
    more » « less
  5. Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids. 
    more » « less