As distributed energy resources (DERs) are widely deployed, DC packetized power microgrids have been considered as a promising solution to incorporate DERs effectively and steadily. In this paper, we consider a DC packetized power microgrid, where the energy is dispatched in the form of power packets with the assist of a power router. However, the benefits of the microgrid can only be realized when energy subscribers (ESs) equipped with DERs actively participate in the energy market. Therefore, peer-to-peer (P2P) energy trading is necessary in the DC packetized power microgrid to encourage the usage of DERs. Different from P2P energy trading in AC microgrids, the dispatching capability of the router needs to be considered in DC microgrids, which will complicate the trading problem. To tackle this challenge, we formulate the P2P trading problem as an auction game, in which the demander ESs submit bids to compete for power packets, and a controller decides the energy allocation and power packet scheduling. Analysis of the proposed scheme is provided, and its effectiveness is validated through simulation.
more »
« less
Voltage Stability Assessment of AC/DC Hybrid Microgrid
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.
more »
« less
- Award ID(s):
- 2034938
- NSF-PAR ID:
- 10423386
- Date Published:
- Journal Name:
- Energies
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any number of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics.more » « less
-
Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids.more » « less
-
Unfolding-based single-stage ac-dc converters offer benefits in terms of efficiency and power density due to the low-frequency operation of the Unfolder, resulting in negligible switching losses. However, the operation of the Unfolder results in time-varying dc voltages at the input of the subsequent dc-dc converter, complicating its soft-switching analysis. The complication is further enhanced due to the nonlinear nature of the output capacitance ( Coss ) of MOSFETs employed in the dc-dc converter. Furthermore, unlike two-stage topologies with a constant dc-link voltage, as seen in high-frequency grid-tied converters, grid voltage fluctuations also impact the dc input voltages of the dc-dc converter in unfolding-based systems. This work comprehensively analyzes the soft-switching phenomenon in the T-type primary bridge-based dc-dc converter used in unfolding-based topologies, considering all the aforementioned challenges. An energy-based methodology is proposed to determine the minimum zero-voltage switching (ZVS) current and ZVS time during various switching transitions of the T-type bridge. It is shown that the existing literature on the ZVS analysis of the T-type bridge-based resonant dc-dc converter, relying solely on capacitive energy considerations, substantially underestimates the required ZVS current values, with errors reaching up to 50%. The proposed analysis is verified through both simulation and hardware testing. The hardware testing is conducted on a 20-kW 3- ϕ unfolding-based ac-dc converter designed for high-power electric vehicle battery charging applications. The ZVS analysis is verified at various grid angles with the proposed analysis ensuring a complete ZVS operation of the ac-dc system throughout the grid cycle.more » « less
-
Microgrids voltage regulation is of particular importance during both grid-connected and islanded modes of operation. Especially, during the islanded mode, when the support from the upstream grid is lost, stable voltage regulation is vital for the reliable operation of critical loads. This paper proposes a robust and data-driven control approach for secondary voltage control of AC microgrids in the presence of uncertainties. To this end, unfalsified adaptive control (UAC) is utilized to select the best stabilizing controller from a set of pre-designed controllers with the minimum knowledge required from the microgrid. Two microgrid test systems are simulated in MATLAB to verify the effectiveness of the proposed method under different scenarios like load change and communication link failure.more » « less