Glacial meltwater contributions to streams depend on watershed characteristics that impact water quantity and quality, with potential changes as glaciers continue to recede. The purpose of our study was to investigate the influence of glacier and bedrock controls on water chemistry in glacial streams, focusing on a range of small to large watersheds in Alaska. Southcentral Alaska provides an ideal study area due to diverse geologic characteristics and varying amounts of glacial coverage across watersheds. To investigate spatial and temporal variability due to glacial coverage and bedrock type, we analyzed water samples (n= 343) from seven watersheds over 2 years for major and trace element concentrations and water stable isotopes. We found variable water chemistry across the glacial rivers related to glacial coverage and the relative amount of metamorphic, sedimentary, and igneous bedrock. Some sites had elevated concentrations of harmful trace elements like As and U from glacier melt or groundwater. Longitudinal (upstream to downstream) variability was apparent within each river, with increasing inputs from tributaries, and groundwater altering the water chemistry relative to glacier meltwater contributions. The water chemistry and isotopic composition of river samples compared with endmember sources suggested a range from glacier-dominated to groundwater-dominated sites along stream transects. For example, water chemistry in the Knik and Matanuska rivers (with large contributing glaciers) was more influenced by glacier meltwater, while water chemistry in the Little Susitna River (with small glaciers) was more influenced by groundwater. Across all rivers, stream chemistry was controlled by glacier inputs near the headwaters and groundwater inputs downstream, with the water chemistry reflecting bedrock type. Our study provides a greater understanding of geochemical and hydrological processes controlling water resources in rapidly changing glacial watersheds.
more »
« less
Heavy metal levels and sources in suspended particulate matters of the glacier watersheds in Northeast Tibetan Plateau
This study collected summer meltwater runoff samples from several glacier watersheds of the northeast Tibetan Plateau during June-July 2017, and measured the concentrations of 17 trace elements (Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Mo, Cd, In, Sb, Cs, Ba) in meltwater suspended particulate matter (SPM), in order to reveal the elemental concentration, spatial distribution, and water quality in remote glacier watershed under regional anthropogenic activities. Results showed that, the concentration of heavy metal elements was relatively high in Yuzhufeng Glacier basin, ranging from 0.57 μg/L (In) to 1,551.6 μg/L (Ba), whereas in Qiyi Glacier basin it was the lowest, ranging from 0.02 to 85.05 μg/L; and relatively medium in other glacier watersheds, with total elemental concentration varying from 1,503.9 to 1726.2 μg/L. Moreover, enrichment factors (EFs) of SPM heavy metals showed significantly higher value in the downstream than that of upper glacier region of the watershed. Most heavy metals with low EFs mainly originated from crust dust, while others with higher EFs (e.g., Cd, Sb) probably originated from anthropogenic sources. Spatially, the EFs of heavy metals were higher in Yuzhufeng and Laohugou Glacier basins; while in other regions the EFs were relatively low, which may be caused by regional land-surface and atmospheric environmental differences surrounding the various glacier watersheds. Compared with other remote locations in global range, heavy metals level (e.g., Cu, Ni, and Zn) in this region is relatively higher. Meanwhile, we find that, though the water quality of the glacier basin in northeast Tibetan Plateau was relatively clean and pollution-free, it is still obviously affected by regional anthropogenic activities. Mining activities, transportation and natural weathering and erosion processes in the study areas have important effects on the content of heavy metal pollutants of river-water SPM in the glacier watershed. Moreover, backward air-mass trajectories demonstrated the potential atmospheric pollutants transport from the surrounding cities and suburbs, to deposit in the snowpack and glaciers, and then melted out and released into meltwater runoff. This study provides a new perspective on more complete view of heavy metals distribution in glacier watershed, and new understanding for the cryosphere water environment evaluation in the Tibetan Plateau region.
more »
« less
- Award ID(s):
- 2011910
- PAR ID:
- 10423530
- Date Published:
- Journal Name:
- Frontiers in Environmental Science
- Volume:
- 10
- ISSN:
- 2296-665X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urban runoff is a significant source of pollutants, including incidental and engineered nanoparticles, to receiving surface waters. The aim of this study is to investigate the impact of urbanization on the concentrations of TiO 2 engineered particles in urban surface waters. The study area boundaries are limited to the Lower Saluda and Nicholas Creek-Broad River from upstream, and outlet of upper Congaree River in Columbia, South Carolina, United States from downstream. This sampling area captures a significant footprint of the urban area of the city of Columbia. Water samples were collected daily from four sites during two rain events. All samples were analyzed for total metal concentrations following acid digestion and for particle number concentration and elemental composition using single particle-inductively coupled plasma-time of flight-mass spectrometry (SP-ICP-TOF-MS). The Ti/Nb ratios in the Broad and Congaree River samples are generally higher than those of natural background ratios, indicating contamination of these two rivers with anthropogenic Ti-bearing particles. Clustering of multi-metal nanoparticles (mmNPs) demonstrated that Ti-bearing particles are distributed mainly among three clusters, FeTiMn, AlSiFe, and TiMnFe, which are typical of naturally occurring iron oxide, clay, and titanium oxide particles, indicating the absence of significant number of anthropogenic multi-element Ti-bearing particles. Thus, anthropogenic Ti-bearing particles are attributed to single-metal particles; that is pure TiO 2 particles. The total concentration of anthropogenic TiO 2 in the rivers was determined by mass balance calculation using bulk titanium concentration and increases in Ti/Nb above the natural background ratio. The concentration of anthropogenic TiO 2 increases following the order 0 to 24 μg L −1 in the Lower Saluda River <0 to 663 μg L −1 in the Broad River <43 to 1051 μg L −1 in Congaree River at Cayce <58 to 5050 μg L −1 in the Congaree River at Columbia. The concentration of anthropogenic TiO 2 increases with increases in urban runoff. The source of anthropogenic TiO 2 is attributed to diffuse urban runoff. This study demonstrates that diffuse urban runoff results in high concentrations of TiO 2 particles in urban surface waters during and following rainfall events which may pose increased risks to aquatic organisms during these episodic events.more » « less
-
Predicting the transport of toxic metals in dolomite saline aquifers where petroleum produced water (PW) is commonly injected is important to prevent underground sources of drinking water contamination. This study presents new experimental results on the degree and impact of precipitation and sorption reactions on the transport of high concentrations of toxic metals (80-100 mg-Ba/L, 80-100 mg-Sr/L, 70-100 mg-Cd/L, 2-100 mg-Pb/L, and 80-100 mg-As/L) in dolomite injected with PW of variable alkalinity (0–200 mg/L), total dissolved solids (1700–77,000 mg/L), and pH (2–7). Changes in the elemental and mineral composition of dolomite surface were measured by BSEs SEM, SEM-EDS, and high-resolution XRD analyses. The results reveal a key role of alkalinity generated from the dissolution of dolomite. We show that a short initial stage where the removal of toxic metals is driven by the initial pH and alkalinity of PW is followed by a prolonged stage where the removal of toxic metals by sorption and precipitation reactions is driven by the alkalinity and pH that results from the kinetic dissolution of dolomite. Precipitated/coprecipitated metals were carbonate minerals reflecting the metal composition of PW. Attained removal levels of tested toxic metals from 1 L of PW using a dolomite core made of 200 g were >90% for Pb, >50% for As, >30% for Cd, and >5% for Ba and Sr. Apparently, the in-situ generation of alkalinity (carbonate ions) and sorption reactions of metals on dolomite catalyzes the precipitation of toxic metals as carbonate minerals. This catalytic effect of dolomite is different with PW and fresh water (FW) of low salinity (NaCl). Precipitation reactions are more prominent with FW than with PW, whereas sorption reactions are more prominent with PW than with FW.more » « less
-
Abstract Glaciers form the headwaters of many watersheds and, in arid polar environments, can provide the vast majority of water to downstream systems. Headwater watersheds are critically important for setting the chemistry for downstream systems, yet we know comparatively little about the patterns and processes that generate the geochemical signature of meltwater on glacier surfaces. Here, we focus on glaciers in the McMurdo Dry Valleys of Antarctica, the largest ice‐free area on the continent, characterized by alpine glaciers flowing into broad, rocky valleys. We examine patterns from the coast inland, accumulation to ablation zones, laterally across individual glaciers, and through the zone of meltwater generation. We directly compare solutes to sediment concentrations, a major source of dissolved solutes. Our findings agree with previous work that the overall meltwater chemistry of a given glacier is a product of local sediment sources and regional wind patterns: foehn winds moving from the ice sheet to the coast and on‐shore sea breezes. Further, these patterns hold across an individual glacier. Finally, we find that the ice chemistry and sediment profiles reflect freeze‐thaw and melt processes that occur at depth. This indicates that the transport and weathering of sediment in the ice profile likely has a strong influence on supra‐ and proglacial stream chemistry. This new understanding strengthens connections between physical and geochemical processes in cold‐based polar glacier environments and helps us better understand the processes driving landscape and ecosystem connectivity.more » « less
-
Pakistan is the most glaciated country on the planet but faces increasing water scarcity due to the vulnerability of its primary water source, the Indus River, to changes in climate and demand. Glacier melt constitutes over one-third of the Indus River’s discharge, but the impacts of glacier shrinkage from anthropogenic climate change are not equal across all eleven subbasins of the Upper Indus. We present an exploration of glacier melt contribution to Indus River flow at the subbasin scale using a distributed surface energy and mass balance model run 2001–2013 and calibrated with geodetic mass balance data. We find that the northern subbasins, the three in the Karakoram Range, contribute more glacier meltwater than the other basins combined. While glacier melt discharge tends to be large where there are more glaciers, our modeling study reveals that glacier melt does not scale directly with glaciated area. The largest volume of glacier melt comes from the Gilgit/Hunza subbasin, whose glaciers are at lower elevations than the other Karakoram subbasins. Regional application of the model allows an assessment of the dominant drivers of melt and their spatial distributions. Melt energy in the Nubra/Shyok and neighboring Zaskar subbasins is dominated by radiative fluxes, while turbulent fluxes dominate the melt signal in the west and south. This study provides a theoretical exploration of the spatial patterns to glacier melt in the Upper Indus Basin, a critical foundation for understanding when glaciers melt, information that can inform projections of water supply and scarcity in Pakistan.more » « less
An official website of the United States government

