skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sociodemographic Factors Associated with Heatwave Risk Perception in the United States
Abstract Extreme heat events are one of the deadliest weather-related hazards in the United States and are increasing in frequency and severity as a result of anthropogenic greenhouse gas emissions. Further, some subpopulations may be more vulnerable than others because of social, economic, and political factors that create disparities in hazard impacts and responses. Vulnerability is also affected by risk perceptions, which can influence protective behaviors. In this study, we use national survey data to investigate the association of key sociodemographic factors with public risk perceptions of heatwaves. We find that risk perceptions are most associated with income, race/ethnicity, gender, and disability status. Age, an important predictor of heat mortality, had smaller associations with heat risk perceptions. Low-income, nonwhite, and disabled individuals tend to perceive themselves to be at greater risks from heatwaves than other subpopulations, corresponding to their elevated risk. Men have lower risk perceptions than women despite their higher mortality and morbidity from heat. This study helps to identify subpopulations in the United States who see themselves as at risk from extreme heat and can inform heat risk communication and other risk reduction practices.  more » « less
Award ID(s):
1753082 1459903
PAR ID:
10425637
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Weather, Climate, and Society
Volume:
14
Issue:
4
ISSN:
1948-8327
Page Range / eLocation ID:
1119 to 1131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood. 
    more » « less
  2. Tree loss is increasing rapidly due to drought- and heat-related mortality and intensifying fire activity. Consequently, the fate of many forests depends on the ability of juvenile trees to withstand heightened climate and disturbance anomalies. Extreme climatic events, such as droughts and heatwaves, are increasing in frequency and severity, and trees in mountainous regions must contend with these landscape-level climate episodes. Recent research focuses on how mortality of individual tree species may be driven by drought and heatwaves, but how juvenile mortality under these conditions would vary among species spanning an elevational gradient—given concurrent variation in climate, ecohydrology, and physiology–remains unclear. We address this knowledge gap by implementing a growth chamber study, imposing extreme drought with and without a compounding heatwave, for juveniles of five species that span a forested life zones in the Southwestern United States. Overall, the length of a progressive drought required to trigger mortality differed by up to 20 weeks among species. Inclusion of a heatwave hastened mean time to mortality for all species by about 1 week. Lower-elevation species that grow in warmer ambient conditions died earlier (Pinus ponderosain 10 weeks,Pinus edulisin 14 weeks) than did higher-elevation species from cooler ambient conditions (Picea engelmanniiandPseudotsuga menziesiiin 19 weeks, andPinus flexilisin 30 weeks). When exposed to a heatwave in conjunction with drought, mortality advanced significantly only for species from cooler ambient conditions (Pinus flexilis: 2.7 weeks earlier;Pseudotsuga menziesii: 2.0 weeks earlier). Cooler ambient temperatures may have buffered against moisture loss during drought, resulting in longer survival of higher-elevation species despite expected drought tolerance of lower-elevation species due to tree physiology. Our study suggests that droughts will play a leading role in juvenile tree mortality and will most directly impact species at warmer climate thresholds, with heatwaves in tandem with drought potentially exacerbating mortality especially of high elevation species. These responses are relevant for assessing the potential success of both natural and managed reforestation, as differential juvenile survival following episodic extreme events will determine future landscape-scale vegetation trajectories under changing climate. 
    more » « less
  3. null (Ed.)
    In evaluating the appropriate response to the covid-19 pandemic, a key parameter is the rate of substitution between wealth and mortality risk, conventionally summarized as the value per statistical life (VSL). For the United States, VSL is estimated as approximately $10 million, which implies the value of preventing 100,000 covid-19 deaths is $1 trillion. Is this value too large? There are reasons to think so. First, VSL is a marginal rate of substitution and the potential risk reductions are non-marginal. The standard VSL model implies the rate of substitution of wealth for risk reduction is smaller when the risk reduction is larger, but a closed-form solution calibrated to estimates of the income elasticity of VSL shows the rate of decline is modest until the value of a non-marginal risk reduction accounts for a substantial share of income; average individuals are predicted to be willing to spend more than half their income to reduce one-year mortality risk by 1 in 100. Second, mortality risk is concentrated among the elderly, for whom VSL may be smaller and who would benefit from a persistent risk reduction for a shorter period because of their shorter life expectancy. Third, the pandemic and responses to it have caused substantial losses in income that should decrease VSL. In contrast, VSL is plausibly larger for risks (like covid-19) that are dreaded, uncertain, catastrophic, and ambiguous. These arguments are evaluated and key issues for improving estimates are highlighted. 
    more » « less
  4. null (Ed.)
    Investigating the spatial distribution patterns of disease and suspected determinants could help one to understand health risks. This study investigated the potential risk factors associated with COVID-19 mortality in the continental United States. We collected death cases of COVID-19 from 3108 counties from 23 January 2020 to 31 May 2020. Twelve variables, including demographic (the population density, percentage of 65 years and over, percentage of non-Hispanic White, percentage of Hispanic, percentage of non-Hispanic Black, and percentage of Asian individuals), air toxins (PM2.5), climate (precipitation, humidity, temperature), behavior and comorbidity (smoking rate, cardiovascular death rate) were gathered and considered as potential risk factors. Based on four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) provided by the novel Geographical Detector technique, we assessed the spatial risk patterns of COVID-19 mortality and identified the effects of these factors. This study found that population density and percentage of non-Hispanic Black individuals were the two most important factors responsible for the COVID-19 mortality rate. Additionally, the interactive effects between any pairs of factors were even more significant than their individual effects. Most existing research examined the roles of risk factors independently, as traditional models are usually unable to account for the interaction effects between different factors. Based on the Geographical Detector technique, this study’s findings showed that causes of COVID-19 mortality were complex. The joint influence of two factors was more substantial than the effects of two separate factors. As the COVID-19 epidemic status is still severe, the results of this study are supposed to be beneficial for providing instructions and recommendations for the government on epidemic risk responses to COVID-19. 
    more » « less
  5. null (Ed.)
    Extreme environmental fluctuations such as marine heatwaves (MHWs) can have devastating effects on ecosystem health and functioning through rapid population declines and destabilization of trophic interactions. However, recent studies have highlighted that population tolerance to MHWs is variable, with some populations even benefitting from MHWs. A number of factors can explain variation in responses between populations including their genetic variation, previous thermal experience and the cumulative heatwave intensity (°C d) of the heatwave itself. We disentangle the contributions of these factors on population mortality and post-heatwave growth rates by experimentally simulating heatwaves (7.5 or 9.2°C, for up to 9 days) for three genotypes of the Southern Ocean diatom Actinocyclus actinochilus . The effects of simulated heatwaves on mortality and population growth rates varied with genotype, thermal experience and the cumulative intensity of the heatwave itself. Firstly, hotter and longer heatwaves increased mortality and decreased post-heatwave growth rates relative to milder, shorter heatwaves. Secondly, growth above the thermal optimum before heatwaves exacerbated heatwave-associated negative effects, leading to increased mortality during heatwaves and slower growth after heatwaves. Thirdly, hotter and longer heatwaves resulted in more pronounced changes to thermal optima (T opt ) immediately following heatwaves. Finally, there is substantial intraspecific variation in post-heatwave growth rates. Our findings shed light on the potential of Southern Ocean diatoms to tolerate MHWs, which will increase both in frequency and in intensity under future climate change. 
    more » « less