The development of new technologies is increasing transportation electrification and electric vehicles (EVs) are expected to become even more popular in coming years. High EV adoption rates can increase the potential to use EVs as an energy resource and operate in vehicle-to-grid (V2G) and vehicle-to-home (V2H). This paper focuses on the resilience analysis of using EVs and roof-top solar photovoltaic systems (PVs) to provide power support in network microgrids (MGs) experiencing an outage due to extreme weather conditions. To determine the effectiveness of using EVs and PVs as backup energy resources, a set of resilience metrics are evaluated for different cases and duration. Simulation results show that the management of EVs and PVs in residential networked MGs could provide power support for several hours during the restoration of a distribution system experiencing an outage.
more »
« less
Enhancing Distribution Grid Resilience to Power Outages Using Electric Vehicles in Residential Microgrids
The transition to electric vehicles (EVs) is underway globally and EVs are expected to become more widely adopted in the coming years. One of the main characteristics of EVs is that they are not only seen as mean for transportation but also potentially as a flexible energy storage resource in vehicle-to-grid (V2G) applications. This paper proposes a resilience analysis on the feasibility of using EVs for power restoration and supply of residential networked microgrids (MGs) experiencing a power outage due to extreme weather. In order to evaluate the effectiveness of utilizing EVs as a backup power supply during an outage, various case studies are presented considering different scenarios and resilience metrics. Test results demonstrate that EVs can satisfy the energy requirements of a residential household for more than 6 hours but, also provide power to the distribution grid through MG aggregation.
more »
« less
- Award ID(s):
- 2021470
- PAR ID:
- 10425800
- Date Published:
- Journal Name:
- 2021 North American Power Symposium (NAPS)
- Page Range / eLocation ID:
- 01 to 06
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate-induced extreme weather events, as well as other natural and human-caused disasters, have the potential to increase the duration and frequency of large power outages. Resilience, in the form of supplying a small amount of power to homes and communities, can mitigate outage consequences by sustaining critical electricity-dependent services. Public decisions about investing in resilience depend, in part, on how much residential customers value those critical services. Here we develop a method to estimate residential willingness-to-pay for back-up electricity services in the event of a large 10-day blackout during very cold winter weather, and then survey a sample of 483 residential customers across northeast USA using that method. Respondents were willing to pay US$1.7–2.3/kWh to sustain private demands and US$19–29/day to support their communities. Previous experience with long-duration outages and the framing of the cause of the outage (natural or human-caused) did not affect willingness-to-pay.more » « less
-
Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.more » « less
-
This paper makes use of electric vehicles (EVs) that are simultaneously connected to the Photovoltaic Cells (PV) and the power grid. In micro-grids, batteries of the electric vehicles (EVs) used as a source of power to feed the power grid in the peak demands of electricity. EVs can help regulation of the power grid by storing excess solar energy and returning it to the grid during high demand hours. This paper proposes a new architecture of micro-grids by using a rooftop solar system, Battery Electric Vehicles (BEVs), grid connected inverters, a boost converter, a bidirectional half-bridge converter, output filter, including L, LC, or LCL, and transformers. The main parts of this micro-grid are illustrated and modeled, as well as a simulation of their operation. In addition, simulation results explore the charging and discharging scenarios of the BEVs.more » « less
-
Community resilience in the face of natural hazards involves both a community's sensitivity to disaster and its potential to bounce back. A failure to integrate equity into resilience considerations results in unequal recovery and disproportionate impacts on vulnerable populations, which has long been a concern in the United States. This research investigated aspects of equity related to community resilience in the aftermath of Winter Storm Uri in Texas which led to extended power outages for more than 4 million households. County-level outage/recovery data was analyzed to explore potential significant links between various county attributes and their share of the outages during the recovery/restoration phase. Next, satellite imagery was used to examine data at a much higher geographical resolution focusing on census tracts in the city of Houston. The goal was to use computer vision to extract the extent of outages within census tracts and investigate their linkages to census tracts attributes. Results from various statistical procedures revealed statistically significant negative associations between counties' percentage of non-Hispanic whites and median household income with the ratio of outages. Additionally, at census tract level, variables including percentages of linguistically isolated population and public transport users exhibited positive associations with the group of census tracts that were affected by the outage as detected by computer vision analysis. Informed by these results, engineering solutions such as the applicability of grid modernization technologies, together with distributed and renewable energy resources, when controlled for the region's topographical characteristics, are proposed to enhance equitable power grid resiliency in the face of natural hazards.more » « less