skip to main content


Title: A power-based abrasion law for use in landscape evolution models
Abstract Subglacial abrasion drives erosion for many glaciers, inundating forefields and proglacial marine environments with glaciogenic sediments. Theoretical treatments of this process suggest that bedrock abrasion rates scale linearly with the energy expended through rock-on-rock friction during slip, but this assumption lacks an empirical basis for general implementation. To test this approach, we simulated abrasion by sliding debris-laden ice over rock beds under subglacial conditions in a cryo-ring shear and a direct shear device. Miniscule volumes of erosion that occurred during each run were mapped with a white-light profilometer, and we measured the rock mechanical properties needed to constrain the energy expended through abrasion. We find that abraded volume per unit area increases linearly with average shear force at the bed and that abrasion rates increase linearly with basal power for plane beds. Lastly, only a small percentage (1%) of the energy partitioned to basal slip is dissipated by abrasion. These results confirm the basal-power abrasion rule is viable to implement in landscape evolution models.  more » « less
Award ID(s):
2017185
PAR ID:
10426415
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
51
Issue:
3
ISSN:
0091-7613
Page Range / eLocation ID:
273 to 277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subglacial seismicity presents the opportunity to monitor inaccessible glacial beds at the epicentral location and time. Glaciers can be underlain by rock or till, a first order control on bed mechanics. Velocity-weakening, necessary for unstable slip, has been shown for each bed type, but is much stronger and evolves over more than an order of magnitude longer distances for till beds. Utilizing a de-stiffened double direct shear apparatus, we found conditions for instability at freezing temperatures and high slip rates for both bed types. During stick–slip stress-drops, we recorded acoustic emissions with piezoelectric transducers frozen into the ice. The two populations of event waveforms appear visually similar and overlap in their statistical features. We implemented a suite of supervised machine learning algorithms to classify the bed type of recorded waveforms and spectra, with prediction accuracy between 65–80%. The Random Forest Classifier is interpretable, showing the importance of initial oscillation peaks and higher frequency energy. Till beds have generally higher friction and resulting stress-drops, with more impulsive first arrivals and more high frequency content compared to rock emissions, but rock beds can produce many till-like events. Seismic signatures could enhance interpretation of bed conditions and mechanics from subglacial seismicity.

     
    more » « less
  2. Abstract Glacier-erosion rates range across orders of magnitude, and much of this variation cannot be attributed to basal sliding rates. Subglacial till acts as lubricating ‘fault gouge’ or ‘sawdust’, and must be removed for rapid subglacial bedrock erosion. Such erosion occurs especially where and when moulin-fed streams access the bed and are unconstrained by supercooling or other processes. Streams also may directly erode bedrock, likely with strong time-evolution. Erosion is primarily by quarrying, aided by strong fluctuations in the water system driven by variable surface melt and by subglacial earthquakes. Debris-bed friction significantly affects abrasion, quarrying and general glacier flow. Frost heave drives cirque headwall erosion as winter cold air enters bergschrunds, creating temperature gradients to drive water flow along premelted films to growing ice lenses that fracture rock, and the glacier removes the resulting blocks. Recent subglacial bedrock erosion and sediment flux are in many cases much higher than long-term averages. Over glacial cycles, evolution of glacial-valley form feeds back strongly on erosion and deposition. Most of this is poorly quantified, with parts open to argument. Glacial erosion and interactions are important to tectonic and volcanic processes as well as climate and biogeochemical fluxes, motivating vigorous research. 
    more » « less
  3. Abstract Theory and experiments indicate that ice–bed separation during glacier slip over 2-D hard beds causes basal shear stress to reach a maximum at a particular slip velocity and decrease at higher velocities. We use the sliding theory of Lliboutry (1968) to explore how friction between debris particles in sliding ice and a rock bed affects this relationship between shear stress and slip velocity. Particle–bed contact forces and associated debris friction increase with increasing slip velocity, owing to increased rates of ice convergence with up-glacier facing surfaces. However, debris friction on diminished areas of the bed counteracts this effect as cavities grow. Thus, friction from debris alone increases only slightly with slip velocity, and for sediment particles larger than ~60 mm in diameter, debris friction peaks and decreases with increasing slip velocity. The effect on the sliding relationship is to steepen its rising limb and shift its shear stress peak to a slightly higher velocity. These results, which exclude the effect of debris friction on cavity size and debris concentrations above ~15%, indicate that the effect of debris in ice is to increase basal shear stress but not significantly change the form of the sliding relationship. 
    more » « less
  4. Abstract

    Glaciers and ice streams flowing over sediment beds commonly have a layer of ice‐rich debris adhered to their base, known as a “frozen fringe,” but its impact on basal friction is unknown. We simulated basal slip over granular beds with a cryogenic ring shear device while ice infiltrated the bed to grow a fringe, and measured the frictional response under different effective stresses and slip speeds. Frictional resistance increased with increasing slip speed until it plateaued at the frictional strength of the till, closely resembling the regularized Coulomb slip law associated with clean ice over deformable beds. We hypothesize that this arises from deformation in a previously unidentified zone of weakly frozen sediments at the fringe's base, which is highly sensitive to temperature and stress gradients. We show how a rheologic model for ice‐rich debris coupled with the thermomechanics of fringe growth can account for the regularized Coulomb behavior.

     
    more » « less
  5. Abstract

    The morphology of glacier beds is a first‐order control on their slip speeds and consequent rates of subglacial erosion. As such, constraining the range of bed shapes expected beneath glaciers will improve estimates of glacier slip speeds. To estimate the variability of subglacial bed morphology, we construct 10 high‐resolution (10 cm) digital elevation models of proglacial areas near current glacier margins from point clouds produced through a combination of terrestrial laser scanning and photogrammetry techniques. The proglacial areas are located in the Swiss Alps and the Canadian Rockies and consist of predominantly debris‐free bedrock of variable lithology (igneous, sedimentary, and metamorphic). We measure eight different spatial parameters intended to describe bed morphologies generated beneath glaciers. Using probability density functions, Bhattacharyya coefficients, principal component analysis, and Bayesian statistical models we investigate the significance of these spatial parameters. We find that the parameters span similar ranges, but the means and standard deviations of the parameter probability density functions are commonly distinct. These results indicate that glacier flow over bedrock may lead to a convergence toward a common bed morphology. However, distinct properties associated with each location prevent morphologies from being uniform.

     
    more » « less