This content will become publicly available on March 11, 2025
Subglacial seismicity presents the opportunity to monitor inaccessible glacial beds at the epicentral location and time. Glaciers can be underlain by rock or till, a first order control on bed mechanics. Velocity-weakening, necessary for unstable slip, has been shown for each bed type, but is much stronger and evolves over more than an order of magnitude longer distances for till beds. Utilizing a de-stiffened double direct shear apparatus, we found conditions for instability at freezing temperatures and high slip rates for both bed types. During stick–slip stress-drops, we recorded acoustic emissions with piezoelectric transducers frozen into the ice. The two populations of event waveforms appear visually similar and overlap in their statistical features. We implemented a suite of supervised machine learning algorithms to classify the bed type of recorded waveforms and spectra, with prediction accuracy between 65–80%. The Random Forest Classifier is interpretable, showing the importance of initial oscillation peaks and higher frequency energy. Till beds have generally higher friction and resulting stress-drops, with more impulsive first arrivals and more high frequency content compared to rock emissions, but rock beds can produce many till-like events. Seismic signatures could enhance interpretation of bed conditions and mechanics from subglacial seismicity.
more » « less- Award ID(s):
- 1854629
- NSF-PAR ID:
- 10528048
- Publisher / Repository:
- International Glaciological Society (IGS)
- Date Published:
- Journal Name:
- Annals of Glaciology
- ISSN:
- 0260-3055
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Observations of glacier slip over till beds, across a range of spatial and temporal scales, show abundant seismicity ranging from Mw∼−2 microearthquakes and tremor (submeter asperities and millisecond duration) to Mw∼7 slow-slip events (∼50 km rupture lengths and ∼30 min durations). A complete understanding of the mechanisms capable of producing seismic signals in these environments represents a strong constraint on bed conditions. In particular, there is a lack of experimental confirmation of velocity-weakening behavior of ice slipping on till, where friction decreases with increasing velocity—a necessity for nucleating seismic slip. To measure the frictional strength and stability of ice sliding against till, we performed a series of double-direct-shear experiments at controlled temperatures slightly above and below the ice melting point. Our results confirm velocity-strengthening ice–till slip at melting temperatures, as has been found in the few previous studies. We provide best-fit rate-and-state friction parameters and their standard deviations from averaging 13 experiments at equivalent conditions. We find evidence of similar velocity-strengthening behavior with 50% by volume debris-laden ice slid against till under the same conditions. In contrast, velocity-weakening and linear time-dependent healing of ice–till slip is present at temperatures slightly below the melting point, providing an experimentally supported mechanism for subglacial seismicity on soft-beds. The stability parameter (a−b) decreases with slip velocity, and evolution occurs over large (mm scale) displacements, suggesting that shear heating and melt buildup is responsible for the weakening. These measurements provide insight into subglacial stiffness in which seismicity of this type might be expected. We discuss glaciological circumstances pointing to potential field targets in which to test this frozen seismic asperity hypothesis.more » « less
-
Abstract Subglacial abrasion drives erosion for many glaciers, inundating forefields and proglacial marine environments with glaciogenic sediments. Theoretical treatments of this process suggest that bedrock abrasion rates scale linearly with the energy expended through rock-on-rock friction during slip, but this assumption lacks an empirical basis for general implementation. To test this approach, we simulated abrasion by sliding debris-laden ice over rock beds under subglacial conditions in a cryo-ring shear and a direct shear device. Miniscule volumes of erosion that occurred during each run were mapped with a white-light profilometer, and we measured the rock mechanical properties needed to constrain the energy expended through abrasion. We find that abraded volume per unit area increases linearly with average shear force at the bed and that abrasion rates increase linearly with basal power for plane beds. Lastly, only a small percentage (1%) of the energy partitioned to basal slip is dissipated by abrasion. These results confirm the basal-power abrasion rule is viable to implement in landscape evolution models.more » « less
-
Abstract Recent seismic measurements from upper Thwaites Glacier indicate that the bed-type variability is closely related to the along-flow basal topography. In high-relief subglacial highlands, stoss sides of topographic highs have a relatively higher acoustic impedance (‘hard’ bed) with lower acoustic impedance (‘soft’ till) on lee sides. This pattern is similar to observations of many deglaciated terrains. Subglacial hydraulic-potential gradient and its divergence show a tendency for water to diverge over the stoss sides and converge into the lee sides. Convergence favors a thicker or more widespread water system, which can more efficiently decouple ice from the underlying till. Under such circumstances, till deformation does occur but, fluxes are relatively small. Till carried from the lee sides onto stoss sides of downstream bumps should couple to the ice more efficiently, increasing the ability for transport by till deformation. In turn, this suggests that steady-state till transport can be achieved if the stoss-side till layer is thin or discontinuous. In addition, the large basal shear stress generated in the highlands seems too high for a bed lubricated by a continuous although thin deforming till, suggesting till discontinuity, which would allow debris-laden ice to erode bedrock on stoss sides, supplying additional till for transport.more » « less
-
Slip of marine-terminating ice streams over beds of deformable till is responsible for most of the contribution of the West Antarctic Ice Sheet to sea level rise. Flow models of the ice sheet and till-bedded glaciers elsewhere require a law that relates slip resistance, slip velocity, and water pressure at the bed. We present results of experiments in which pressurized ice at its melting temperature is slid over a water-saturated till bed. Steady-state slip resistance increases with slip velocity owing to sliding of ice across the bed, but above a threshold velocity, till shears at its rate-independent Coulomb strength. These results motivate a generalized slip law for glacier-flow models that combines processes of hard-bedded sliding and bed deformation.
-
Abstract While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick‐slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris‐laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice‐slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick‐slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock‐on‐rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate‐and‐state friction laws that were developed for rock friction.