The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $$n \geqslant k \geqslant t \geqslant 2$$, we consider a collection of $$k$$ families $$\mathcal{A}_i: 1 \leq i \leqslant k$$ where $$\mathcal{A}_i = \{ A_{i,j} \subset [n] : j \in [n] \}$$ so that $$A_{1, i_1} \cap \cdots \cap A_{k,i_k} \neq \varnothing$$ if and only if there are at least $$t$$ distinct indices $$i_1,i_2,\dots,i_k$$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $$\beta_{k,t}(n)$$ of the families with ground set $[n]$.
more »
« less
Extremes and extremal indices for level set observables on hyperbolic systems *
Abstract Consider an ergodic measure preserving dynamical system ( T , X , μ ), and an observable ϕ : X → R . For the time series X n ( x ) = ϕ ( T n ( x )), we establish limit laws for the maximum process M n = max k ⩽ n X k in the case where ϕ is an observable maximized on a line segment, and ( T , X , μ ) is a hyperbolic dynamical system. Such observables arise naturally in weather and climate applications. We consider the extreme value laws and extremal indices for these observables on hyperbolic toral automorphisms, Sinai dispersing billiards and coupled expanding maps. In particular we obtain clustering and nontrivial extremal indices due to self intersection of submanifolds under iteration by the dynamics, not arising from any periodicity.
more »
« less
- Award ID(s):
- 2009923
- PAR ID:
- 10427546
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- 1136 to 1167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Consider $$(X_{i}(t))$$ ( X i ( t ) ) solving a system of N stochastic differential equations interacting through a random matrix $${\mathbf {J}} = (J_{ij})$$ J = ( J ij ) with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of $$(X_i(t))$$ ( X i ( t ) ) , initialized from some $$\mu $$ μ independent of $${\mathbf {J}}$$ J , are universal, i.e., only depend on the choice of the distribution $$\mathbf {J}$$ J through its first and second moments (assuming e.g., sub-exponential tails). We take a general combinatorial approach to proving universality for dynamical systems with random coefficients, combining a stochastic Taylor expansion with a moment matching-type argument. Concrete settings for which our results imply universality include aging in the spherical SK spin glass, and Langevin dynamics and gradient flows for symmetric and asymmetric Hopfield networks.more » « less
-
Coronal mass ejections (CMEs) are often associated with X-ray (SXR) flares powered by magnetic reconnection in the low corona, while the CME shocks in the upper corona and interplanetary (IP) space accelerate electrons often producing the type II radio bursts. The CME and the reconnection event are part of the same energy release process as highlighted by the correlation between reconnection flux (ϕrec) that quantifies the strength of the released magnetic free energy during the SXR flare, and the CME kinetic energy that drives the IP shocks leading to type II bursts. Unlike the Sun, these physical parameters cannot be directly inferred in stellar observations. Hence, scaling laws between unresolved sun-as-a-star observables, namely SXR luminosity (LX) and type II luminosity (LR), and the physical properties of the associated dynamical events are crucial. Such scaling laws also provide insights into the interconnections between the particle acceleration processes across low-corona to IP space during solar-stellar “flare-CME-type II” events. Using long-term solar data in the SXR to radio waveband, we derived a scaling law between two novel power metrics for the flare and CME-associated processes. The metrics of “flare power” (Pflare = √(LXϕrec)) and “CME power” (PCME = √(LRVCME2)), whereVCMEis the CME speed, scale asPflare ∝ PCME0.76 ± 0.04. In addition,LXandϕrecshow power-law trends withPCMEwith indices of 1.12 ± 0.05 and 0.61 ± 0.05, respectively. These power laws help infer the spatially resolved physical parameters,VCMEandϕrec, from disk-averaged observables,LXandLRduring solar-stellar flare-CME-type II events.more » « less
-
Private information retrieval (PIR) allows a user to retrieve a desired message out of K possible messages from N databases without revealing the identity of the desired message. There has been significant recent progress on understanding fundamental information-theoretic limits of PIR, and in particular the download cost of PIR for several variations. Majority of existing works however, assume the presence of replicated databases, each storing all the K messages. In this work, we consider the problem of PIR from storage constrained databases. Each database has a storage capacity of μKL bits, where K is the number of messages, L is the size of each message in bits, and μ ∈ [1/N, 1] is the normalized storage. In the storage constrained PIR problem, there are two key design questions: a) how to store content across each database under storage constraints; and b) construction of schemes that allow efficient PIR through storage constrained databases. The main contribution of this work is a general achievable scheme for PIR from storage constrained databases for any value of storage. In particular, for any (N, K), with normalized storage μ = t/N, where the parameter t can take integer values t ∈ {1, 2, ..., N}, we show that our proposed PIR scheme achieves a download cost of (1 + 1/t + 1/2 + ⋯ + 1/t K-1 ). The extreme case when μ = 1 (i.e., t = N) corresponds to the setting of replicated databases with full storage. For this extremal setting, our scheme recovers the information-theoretically optimal download cost characterized by Sun and Jafar as (1 + 1/N + ⋯ +1/N K-1 ). For the other extreme, when μ = 1/N (i.e., t = 1), the proposed scheme achieves a download cost of K. The most interesting aspect of the result is that for intermediate values of storage, i.e., 1/N <; μ <; 1, the proposed scheme can strictly outperform memory-sharing between extreme values of storage.more » « less
-
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.more » « less
An official website of the United States government

