skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Abstract. With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.  more » « less
Award ID(s):
2123632
PAR ID:
10428010
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
15
Issue:
14
ISSN:
1991-9603
Page Range / eLocation ID:
5829 to 5856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Submesoscale circulations influence momentum, buoyancy and transport of biological tracers and pollutants within the upper turbulent layer. How much and how far into the water column this influence extends remain open questions in most of the global ocean. This work evaluates the behavior of neutrally buoyant particles advected in simulations of the northern Gulf of Mexico by analyzing the trajectories of Lagrangian particles released multiple times at the ocean surface and below the mixed layer. The relative role of meso- and submesoscale dynamics is quantified by comparing results in submesoscale permitting and mesoscale resolving simulations. Submesoscale circulations are responsible for greater vertical transport across fixed depth ranges and also across the mixed layer, both into it and away from it, in all seasons. The significance of the submesoscale-induced transport, however, is far greater in winter. In this season, a kernel density estimation and a detailed vertical mixing analysis are performed. It is found that in the large mesoscale Loop Current eddy, upwelling into the mixed layer is the major contributor to the vertical fluxes, despite its clockwise circulation. This is opposite to the behavior simulated in the mesoscale resolving case. In the “submesoscale soup,” away from the large mesoscale structures such as the Loop Current and its detached eddies, upwelling into the mixed layer is distributed more uniformly than downwelling motions from the surface across the base of the mixed layer. Maps of vertical diffusivity indicate that there is an order of magnitude difference among simulations. In the submesoscale permitting case values are distributed around 10 –3 m 2 s –1 in the upper water column in winter, in agreement with recent indirect estimates off the Chilean coast. Diffusivities are greater in the eastern portion of the Gulf, where the submesoscale circulations are more intense due to sustained density gradients supplied by the warmer and saltier Loop Current. 
    more » « less
  2. Abstract Submesoscale structures fill the ocean surface, and recent numerical simulations and indirect observations suggest that they may extend to the ocean interior. It remains unclear, however, how far-reaching their impact may be—in both space and time, from weather to climate scales. Here transport pathways and the ultimate fate of the Irminger Current water from the continental slope to Labrador Sea interior are investigated through regional ocean simulations. Submesoscale processes modulate this transport and in turn the stratification of the Labrador Sea interior, by controlling the characteristics of the coherent vortices formed along West Greenland. Submesoscale circulations modify and control the Labrador Sea contribution to the global meridional overturning, with a linear relationship between time-averaged near surface vorticity and/or frontogenetic tendency along the west coast of Greenland, and volume of convected water. This research puts into contest the lesser role of the Labrador Sea in the overall control of the state of the MOC argued through the analysis of recent OSNAP (Overturning in the Subpolar North Atlantic Program) data with respect to estimates from climate models. It also confirms that submesoscale turbulence scales-up to climate relevance, pointing to the urgency of including its advective contribution in Earth systems models. 
    more » « less
  3. This work compares the performance of three ocean model frameworks that currently produce outputs of the ocean properties specific to the US Caribbean ocean; the Global Ocean Forecast System (GOFS), US Navy Coastal Ocean Model for the American Seas (AMSEAS) and the Daily Global Physical Bulletin (PSY4). Separate comparisons are done for the ocean properties in the open ocean and nearshore regions. For the open ocean, the model outputs are compared with the AVISO satellite altimetry data for the sea-surface height anomaly (SSHA), the OSCAR data for surface current velocities and the G1SST satellite data for sea-surface temperature (SST). For the nearshore analysis, the model outputs are compared with in-situ buoy measurements and HOBO logger data in the nearshore regions. Our analysis shows that the PSY4 produces the most realistic outputs of SSHA and surface current velocities in the open ocean, whereas all the models produce a strong correlation in terms of the seasonal variability of the surface temperature when compared to the G1SST data. The AMSEAS model, despite being a fine resolution regional model, underperforms in terms of the surface current velocity outputs in the open ocean due to the influence of the simulated submesoscale turbulence on the mesoscale variability. In the nearshore regions, none of the models produce agreeable outputs on the SSHA and current velocities. These findings provide useful insight on the applicability of the model outputs for various operations that require oceanographic data specific to the US Caribbean ocean. 
    more » « less
  4. Abstract Idealized convection‐permitting simulations of radiative‐convective equilibrium have become a popular tool for understanding the physical processes leading to horizontal variability of tropical water vapor and rainfall. However, the applicability of idealized simulations to nature is still unclear given that important processes are typically neglected, such as lateral water vapor advection by extratropical intrusions, or interactive ocean coupling. Here, we exploit spectral analysis to compactly summarize the multiscale processes supporting convective aggregation. By applying this framework to high‐resolution reanalysis data and satellite observations in addition to idealized simulations, we compare convective‐aggregation processes across horizontal scales and data sets. The results affirm the validity of the radiative‐convective equilibrium simulations as an analogy to the real world. Column moist static energy tendencies share similar signs and scale selectivity in convection‐permitting models and observations: Radiation increases variance at wavelengths above 1,000 km, while advection damps variance across wavelengths, and surface fluxes mostly reduce variance between 1,000 and 10,000 km. 
    more » « less
  5. Abstract As one kind of submesoscale instability, symmetric instability (SI) of the ocean surface mixed layer (SML) plays a significant role in modulating the SML energetics and material transport. The small spatial scales of SI,O(10 m–1 km), are not resolved by current climate ocean models and most regional models. This study describes comparisons in an idealized configuration of the SI parameterization scheme proposed by Bachman et al. (2017,https://doi.org/10.1016/j.ocemod.2016.12.003) (SI‐parameterized) versus the K‐Profile Parameterization scheme (SI‐neglected) as compared to a SI‐permitting model; all variants use the Coastal and Regional Ocean Community Model version of the Regional Ocean Modeling System and this study also serves to introduce the SI parameterization in that model. In both the SI‐parameterized and SI‐permitting models, the geostrophic shear production is enhanced and anticyclonic potential vorticity is reduced versus the SI‐neglected model. A comprehensive comparison of the energetics (geostrophic shear production, vertical buoyancy flux), mixed layer thickness, potential vorticity, and tracer redistribution indicate that all these variables in the SI‐parameterized case have structures closer to the SI‐permitting case in contrast to the SI‐neglected one, demonstrating that the SI scheme qualitatively improves representation of the impacts of SI. This work builds toward applying the SI scheme in a realistic regional or climate model. 
    more » « less