Abstract P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector’s response to $$\alpha $$ α particles incident on the sensitive passivated and p $$^+$$ + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in $$^{76}$$ 76 Ge. $$\alpha $$ α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of $$\alpha $$ α identification, reliably identifying $$\alpha $$ α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface $$\alpha $$ α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the $$0\nu \beta \beta $$ 0 ν β β region of interest window by an order of magnitude in the Majorana Demonstrator and will be used in the upcoming LEGEND-200 experiment.
more »
« less
Very large SiPM arrays with aggregated output
Abstract In this work we will document the design and the performances of a SiPM-based photo-detector with a surface area of 100 cm 2 conceived to operate as a replacement for PMTs. The signals from 94 SiPMs are summed up to produce an aggregated output that exhibits in liquid nitrogen a dark count rate (DCR) lower than 100 cps over the entire surface, a signal to noise ratio better than 13, and a timing resolution better than 5.5 ns. The module feeds about 360 mW at 5 V with a dynamic range in excess of 500 photo-electrons on a 100 Ω differential line. The unit can also operate at room temperature, at the cost of an increase of DCR to 10 8 cps.
more »
« less
- PAR ID:
- 10429081
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 17
- Issue:
- 05
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P05038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Scintillating Bubble Chamber (SBC) collaboration purchased 32 Hamamatsu VUV4 silicon photomultipliers (SiPMs) for use in SBC-LAr10, a bubble chamber containing 10 kg of liquid argon. A dark-count characterization technique, which avoids the use of a single-photon source, was used at two temperatures to measure the VUV4 SiPMs breakdown voltage (VBD), the SiPM gain (gSiPM), the rate of change ofgSiPMwith respect to voltage (m), the dark count rate (DCR), and the probability of a correlated avalanche (PCA) as well as the temperature coefficients of these parameters. A Peltier-based chilled vacuum chamber was developed at Queen's University to cool down the Quads to 233.15 ± 0.2 K and 255.15 ± 0.2 K with average stability of ±20 mK. An analysis framework was developed to estimate VBDto tens of mV precision and DCR close to Poissonian error. The temperature dependence of VBDwas found to be 56 ± 2 mV K-1, andmon average across all Quads was found to be (459 ± 3(stat.)±23(sys.))× 103e-PE-1V-1. The average DCR temperature coefficient was estimated to be 0.099 ± 0.008 K-1corresponding to a reduction factor of 7 for every 20 K drop in temperature. The average temperature dependence of PCAwas estimated to be 4000 ± 1000 ppm K-1. PCAestimated from the average across all SiPMs is a better estimator than the PCAcalculated from individual SiPMs, for all of the other parameters, the opposite is true. All the estimated parameters were measured to the precision required for SBC-LAr10, and the Quads will be used in conditions to optimize the signal-to-noise ratio.more » « less
-
null (Ed.)Cyber-Physical Systems (CPS) are important components of critical infrastructure and must operate with high levels of reliability and security. We propose a conceptual approach to securing CPSs: the Cyber-Physical Immune System (CPIS), a collection of hardware and software elements deployed on top of a conventional CPS. Inspired by its biological counterpart, the CPIS comprises an independent network of distributed computing units that collects data from the conventional CPS, utilizes data-driven techniques to identify threats, adapts to the changing environment, alerts the user of any threats or anomalies, and deploys threat-mitigation strategies.more » « less
-
In sunlit waters, photodegradation of dissolved organic matter (DOM) yields completely oxidized carbon ( i.e. , CO 2 ) as well as a suite of partially oxidized compounds formed from oxygen incorporation ( i.e. , partial photo-oxidation). Of these two groups of DOM photo-products, more studies focus on CO 2 (a greenhouse gas) than on partially oxidized DOM, which is likely a diverse group of compounds with poorly constrained roles in aquatic carbon cycling or biogeochemistry. The objective of this study is to address knowledge gaps on the prevalence, products, and pathways of DOM partial photo-oxidation. Here we traced the photochemical incorporation of isotopically labelled 18 O 2 into DOM isolated from Alaskan Arctic surface waters using high-resolution mass spectrometry. Complete and partial photo-oxidation of DOM was also quantified as CO 2 production and O 2 consumption. The majority of 18 O-containing partial oxidation photo-products were classified as carboxylic rich alicyclic molecules (CRAM) and overlapped in composition with previously reported photo-products known to result from the oxidation of DOM by singlet oxygen. These results support a previously proposed hypothesis that photo-oxidation by singlet oxygen may contribute to the formation of CRAM, a compound class of DOM ubiquitously observed in surface waters. The novel application of an isotopic tracer for oxygen incorporation with a mass balance approach to quantify complete and partial photo-oxidation of DOM revealed that less than one mol of O 2 is required to produce one mol of CO 2 . A sensitivity analysis based on this new knowledge demonstrated that the magnitude of DOM partial photo-oxidation may be underestimated by up to four-fold. Consequently, partial photo-oxidation likely plays a more prominent role in shaping DOM composition in sunlit waters of the Arctic than previously understood. Therefore, partial photo-oxidation should be increasingly incorporated into the experimental framework of studies focused on DOM composition in surface waters.more » « less
-
In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (Pd x Au 100− x ) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of Pd x Au 100− x alloy NPs varied based on palladium composition ( x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and Pd x Au 100− x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than Pd x Au 100− x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia.more » « less
An official website of the United States government

