skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Love and Rayleigh waves in detecting and locating seismic sources
SUMMARY Surface waves are critical in detecting and locating seismic sources that do not produce much high-frequency radiation. For such sources, typical approaches using body waves for detecting and locating earthquakes are less effective. Slow earthquakes and exotic seismic sources often have this seismic radiation characteristic, and array analyses of surface waves recorded on global and regional seismic networks have proven effective in recognizing such sources. Most approaches have relied on Rayleigh waves, whereas Love waves have rarely been used. Here we develop a new approach using multiscale arrays to detect and locate seismic sources with both Love and Rayleigh surface waves. The method first forms three-station subarrays and then uses three-component records of the stations to independently estimate three sets of surface wave propagation directions and centroid arrival times. The subarray estimates are then assembled to locate seismic sources and their origin times. We find that using multiple, disconnected global networks improves location accuracy and that using both types of surface waves can enhance detection sensitivity and robustness.  more » « less
Award ID(s):
2143413
PAR ID:
10429304
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
234
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 2394-2410
Size(s):
p. 2394-2410
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Comprehensive observations of surface wave anisotropy across Alaska and the Aleutian subduction zone would help to improve understanding of its tectonics, mantle dynamics, and earthquake risk. We produce such observations, using stations from the USArray Transportable Array, regional networks across Alaska, and the Alaska Amphibious Community Seismic Experiment in the Alaska‐Aleutian subduction zone both onshore and offshore. Our data include Rayleigh and Love wave phase dispersion from earthquakes (28–85 s) and ambient noise two‐ and three‐station interferometry (8–50 s). Compared with using two‐station interferometry alone, three‐station interferometry significantly improves the signal‐to‐noise ratio and approximately doubles the number of measurements retained. Average differences between both isotropic and anisotropic tomographic maps constructed from different methods lie within their uncertainties, which is justification for combining the measurements. The composite tomographic maps include Rayleigh wave isotropy and azimuthal anisotropy from 8 to 85 s both onshore and offshore, and onshore Love wave isotropy from 8 to 80 s. In the Alaska‐Aleutian subduction zone, Rayleigh wave fast directions vary from trench parallel to perpendicular and back to parallel with increasing periods, apparently reflecting the effect of the subducted Pacific Plate. The tomographic maps provide a basis for inferring the 3‐D anisotropic crustal and uppermost mantle structure across Alaska and the Aleutian subduction zone. 
    more » « less
  2. Summary For a weakly anisotropic medium, Rayleigh and Love wave phase speeds at angular frequency ω and propagation azimuth ψ are given approximately by V(ω, ψ) = A0 + A2ccos 2ψ + A2ssin 2ψ + A4ccos 4ψ + A4ssin 4ψ. Earlier theories of the propagation of surface waves in anisotropic media based on non-degenerate perturbation theory predict that the dominant components are expected to be 2ψ for Rayleigh waves and 4ψ for Love waves. This paper is motivated by recent observations of the the 2ψ component for Love waves and 4ψ for Rayleigh waves, referred to here as “unexpected anisotropy”. To explain these observations, we present a quasi-degenerate theory of Rayleigh-Love coupling in a weakly anisotropic medium based on Hamilton’s Principle in Cartesian coordinates, benchmarking this theory with numerical results based on SPECFEM3D. We show that unexpected anisotropy is expected to be present when Rayleigh-Love coupling is strong and recent observations of Rayleigh and Love wave 2ψ and 4ψ anisotropy can be fit successfully with physically plausible models of a depth-dependent tilted transversely isotropic (TTI) medium. In addition, when observations of the 2ψ and 4ψ components of Rayleigh and Love anisotropy are used in the inversion, the ellipticity parameter ηX, introduced here, is better constrained, we can constrain the absolute dip direction based on polarization measurements, and we provide evidence that the mantle should be modeled as a tilted orthorhombic medium rather than a TTI medium. Ignoring observations of unexpected anisotropy may bias the estimated seismic model significantly. We also provide information about the polarization of the quasi-Love waves and coupling between fundamental mode Love and overtone Rayleigh waves in both continental and oceanic settings. The theory of SV-SH coupling for horizontally propagating body waves is presented for comparison with the surface wave theory, with emphasis on results for a TTI medium. 
    more » « less
  3. Abstract Distributed acoustic sensing (DAS) offers a cost effective, nonintrusive method for high-resolution near-surface characterization in urban environments where conventional geophysical surveys are limited or nonexistent. However, passive imaging with DAS in urban settings presents challenges such as strong diurnal traffic noise, nonlinear array geometry, and poor fiber coupling to the ground. We repurposed a dark fiber in Melbourne, Australia, into a 25 km DAS array that traces busy arterial roads, tram routes, and orthogonal sections. By employing noise cross correlation and array beamforming, we calculated dispersion curves and successfully inverted for a near-surface shear-wave velocity model down to 100 meters. Stationary seismic sources are maximized by selecting daytime traffic signals, thereby recovering surface waves and reducing interference from acoustic waves from man-made structures in the subsurface. Poorly coupled channels, which are linked to fiber maintenance pits, are identified through cross-correlation amplitudes. The dispersion curve calculation further considers the channel orientation to avoid mixing Rayleigh and Love waves. Using a trans-dimensional Markov chain Monte Carlo sampling approach, we achieved effective model inversion without a prior reference model. The resulting near-surface profile aligns with mapped lithology and reveals previously undocumented lithological variation. 
    more » « less
  4. Abstract We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity. 
    more » « less
  5. Abstract Surface-wave arrival angles are an important secondary set of observables to constrain Earth’s 3D structure. These data have also been used to refine information on the alignments of horizontal seismometer components with the geographic coordinate system. In the past, particle motion has been inspected and analyzed on single three-component seismograms, one at a time. But the advent of large, dense seismic networks has made this approach tedious and impractical. Automated toolboxes are now routinely used for datasets in which station operators cannot determine the orientation of a seismometer upon deployment, such as conventional free-fall ocean bottom seismometers. In a previous paper, we demonstrated that our automated Python-based toolbox Doran–Laske-Orientation-Python compares favorably with traditional approaches to determine instrument orientations. But an open question has been whether the technique also provides individual high-quality measurements for an internally consistent dataset to be used for structural imaging. For this feasibility study, we compared long-period Rayleigh-wave arrival angles at frequencies between 10 and 25 mHz for 10 earthquakes during the first half of 2009 that were recorded at the USArray Transportable Array—a component of the EarthScope program. After vigorous data vetting, we obtained a high-quality dataset that compares favorably with an arrival angle database compiled using our traditional interactive screen approach, particularly at frequencies 20 mHz and above. On the other hand, the presence of strong Love waves may hamper the automated measurement process as currently implemented. 
    more » « less