skip to main content


Title: GRACE Downscaler: A Framework to Develop and Evaluate Downscaling Models for GRACE
Monitoring and managing groundwater resources is critical for sustaining livelihoods and supporting various human activities, including irrigation and drinking water supply. The most common method of monitoring groundwater is well water level measurements. These records can be difficult to collect and maintain, especially in countries with limited infrastructure and resources. However, long-term data collection is required to characterize and evaluate trends. To address these challenges, we propose a framework that uses data from the Gravity Recovery and Climate Experiment (GRACE) mission and downscaling models to generate higher-resolution (1 km) groundwater predictions. The framework is designed to be flexible, allowing users to implement any machine learning model of interest. We selected four models: deep learning model, gradient tree boosting, multi-layer perceptron, and k-nearest neighbors regressor. To evaluate the effectiveness of the framework, we offer a case study of Sunflower County, Mississippi, using well data to validate the predictions. Overall, this paper provides a valuable contribution to the field of groundwater resource management by demonstrating a framework using remote sensing data and machine learning techniques to improve monitoring and management of this critical resource, especially to those who seek a faster way to begin to use these datasets and applications.  more » « less
Award ID(s):
2019561
PAR ID:
10429391
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
9
ISSN:
2072-4292
Page Range / eLocation ID:
2247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Groundwater is a critical freshwater resource for irrigation in the California Central Valley, particularly in times of drought. Groundwater depth has dropped rapidly in California’s overdrafted basins, but irregular monitoring across space and time limits the accuracy of the groundwater depth projections in the Groundwater Sustainability Plans required by the California Sustainable Groundwater Management Act (SGMA). This work constructs a Bayesian hierarchical model for predicting groundwater depth from sparse monitoring data in three Central Valley counties. We apply this model to generate 300 m resolution monthly groundwater depth estimates for drought years 2013–2015, and compare our smoothed groundwater depth map to smoothed rasterized maps published by the CA Department of Water Resources. Finally, we quantify uncertainty in groundwater depth predictions that are made by imputing missing well data and interpolating predictions across the study domain, which is helpful in directing future sampling efforts towards areas with high uncertainty. The BHM model accurately captures the spatiotemporal pattern in groundwater depth, as evidenced by 94.54% of withheld test samples’ true depth being covered by the 95% prediction interval drawn from the BHM posterior distribution. The model converged despite a very sparse dataset, demonstrating broad applicability for evaluating changes in regional groundwater depth as required by SGMA. Depth prediction intervals can also help prioritize future groundwater depth sampling activity and increase the utility of groundwater depth maps in total storage predictions by enabling sensitivity analysis.

     
    more » « less
  2. Abstract

    GRACE (Gravity Recovery and Climate Experiment) has been widely used to evaluate terrestrial water storage (TWS) and groundwater storage (GWS). However, the coarse‐resolution of GRACE data has limited the ability to identify local vulnerabilities in water storage changes associated with climatic and anthropogenic stressors. This study employs high‐resolution (1 km2) GRACE data generated through machine learning (ML) based statistical downscaling to illuminate TWS and GWS dynamics across twenty sub‐regions in the Indus Basin. Monthly TWS and GWS anomalies obtained from a geographically weighted random forest (RFgw) model maintained good consistency with original GRACE data at the 25 km2grid scale. The downscaled data at 1 km2resolution illustrate the spatial heterogeneity of TWS and GWS depletion within each sub‐region. Comparison with in‐situ GWS from 2,200 monitoring wells shows that downscaling of GRACE data significantly improves agreement with in‐situ data, evidenced by higher Kling‐Gupta Efficiency (0.50–0.85) and correlation coefficients (0.60–0.95). Hotspots with the highest TWS and GWS decline rate between 2002 and 2023 were Dehli Doab (−442, −585 mm/year), BIST Doab (−367, −556 mm/year), Rajasthan (−242, −381 mm/year), and BARI (−188, −333 mm/year). Based on a general additive model, 47%–83% of the TWS decline was associated with anthropogenic stressors mainly due to increasing trends of crop sown area, water consumption, and human settlements. The decline rate of TWS and GWS anomalies was lower (i.e., −25 to −75 mm/year) in upstream sub‐regions (e.g., Yogo, Gilgit, Khurmong, Kabul) where climatic factors (downward shortwave radiations, air temperature, and sea surface temperature) explained 72%–91% of TWS/GWS changes. The relative influences of climatic and anthropogenic stressors varied across sub‐regions, underscoring the complex interplay of natural‐human activities in the basin. These findings inform place‐based water resource management in the Indus Basin by advancing the understanding of local vulnerabilities.

     
    more » « less
  3. Abstract

    Water supply infrastructure planning in groundwater-dependent regions is often challenged by uncertainty in future groundwater resource availability. Many major aquifer systems face long-term water table decline due to unsustainable withdrawals. However, many regions, especially those in the developing world, have a scarcity of groundwater data. This creates large uncertainties in groundwater resource predictions and decisions about whether to develop alternative supply sources. Developing infrastructure too soon can lead to unnecessary and expensive irreversible investments, but waiting too long can threaten water supply reliability. This study develops an adaptive infrastructure planning framework that applies Bayesian learning on groundwater observations to assess opportunities to learn about groundwater availability in the future and adapt infrastructure plans. This approach allows planners in data scarce regions to assess under what conditions a flexible infrastructure planning approach, in which initial plans are made but infrastructure development is deferred, can mitigate the risk of overbuilding infrastructure while maintaining water supply reliability in the face of uncertainty. This framework connects engineering options analysis from infrastructure planning to groundwater resources modeling. We demonstrate a proof-of-concept on a desalination planning case for the city of Riyadh, Saudi Arabia, where poor characterization of a fossil aquifer creates uncertainty in how long current groundwater resources can reliably supply demand. We find that a flexible planning approach reduces the risk of over-building infrastructure compared to a traditional static planning approach by 40% with minimal reliability risk (<1%). This striking result may be explained by the slow-evolving nature of groundwater decline, which provides time for planners to react, in contrast to more sudden risks such as flooding where tradeoffs between cost and reliability risk are heightened. This Bayesian approach shows promise for many civil infrastructure domains by providing a method to quantify learning in environmental modeling and assess the effectiveness of adaptive planning.

     
    more » « less
  4. Abstract

    Groundwater is our largest freshwater reservoir, playing an important role in the global hydrologic cycle. Lack of reliable groundwater data restricts the development of global groundwater monitoring systems linking observations with modeling at spatial scales relevant for local decision making. Despite the growing interests in machine learning (ML) for groundwater resource modeling, taking ML models to the global scale is still outstanding due to sparse groundwater data. The contiguous US (CONUS) has extensive groundwater information covering a wide range of hydrogeologic settings. We hypothesize that a ML model trained on the CONUS is transferable to other regions, and thus can be used to produce a global water table depth (WTD) map within the bounds of transferability. To test this hypothesis, we conduct a study on transferring groundwater knowledge between the CONUS and Denmark, using several random forest models trained against ~ 30m resolution long-term mean WTD data. The joint model trained on data from the CONUS and Denmark outperforms the individual models trained separately, implying similarities within global groundwater systems. The largest improvement occurs in Denmark, where the testing Nash-Sutcliffe efficiency rises from 0.68 to 0.95. SHapley Additive exPlanations (SHAP) values are utilized to express the importance of input variables. While annual mean precipitation plays a key role in the joint model and the model for the CONUS, it is the second least important input variable in the model for Denmark where local processes dominate. Moreover, Köppen-Geiger climate classification shows a significant impact on the model testing performance and the importance ranking of input variables, which might be a missing input variable in the applied random forest models. This study provides unique insights into future ML model developments towards global groundwater monitoring and improves our confidence in producing a hyper-resolution global WTD map for sustainable freshwater management.

     
    more » « less
  5. Chen, Guohua ; Khan, Faisal (Ed.)
    Artificial intelligence (AI) and machine learning (ML) are novel techniques to detect hidden patterns in environmental data. Despite their capabilities, these novel technologies have not been seriously used for real-world problems, such as real-time environmental monitoring. This survey established a framework to advance the novel applications of AI and ML techniques such as Tiny Machine Learning (TinyML) in water environments. The survey covered deep learning models and their advantages over classical ML models. The deep learning algorithms are the heart of TinyML models and are of paramount importance for practical uses in water environments. This survey highlighted the capabilities and discussed the possible applications of the TinyML models in water environments. This study indicated that the TinyML models on microcontrollers are useful for a number of cutting-edge problems in water environments, especially for monitoring purposes. The TinyML models on microcontrollers allow for in situ real-time environmental monitoring without transferring data to the cloud. It is concluded that monitoring systems based on TinyML models offer cheap tools to autonomously track pollutants in water and can replace traditional monitoring methods. 
    more » « less