Abstract Healthcare-associated infections (HAIs) are a major problem in hospital infection control. Although HAIs can be suppressed using contact precautions, such precautions are expensive, and we can only apply them to a small fraction of patients (i.e., a limited budget). In this work, we focus on two clinical problems arising from the limited budget: (a) choosing the best patients to be placed under precaution given a limited budget to minimize the spread (the isolation problem), and (b) choosing the best patients to release when limited budget requires some of the patients to be cleared from precaution (the clearance problem). A critical challenge in addressing them is that HAIs have multiple transmission pathways such that locations can also accumulate ‘load’ and spread the disease. One of the most common practices when placing patients under contact precautions is the regular clearance of pathogen loads. However, standard propagation models like independent cascade (IC)/susceptible-infectious-susceptible (SIS) cannot capture such mechanisms directly. Hence to account for this challenge, using non-linear system theory, we develop a novel spectral characterization of a recently proposed pathogen load based model,2-Mode-SISmodel, on people/location networks to capture spread dynamics of HAIs. We formulate the two clinical problems using this spectral characterization and develop effective and efficient algorithms for them. Our experiments show that our methods outperform several natural structural and clinical approaches on real-world hospital testbeds and pick meaningful solutions.
more »
« less
Detecting Sources of Healthcare Associated Infections
Healthcare acquired infections (HAIs) (e.g., Methicillin-resistant Staphylococcus aureus infection) have complex transmission pathways, spreading not just via direct person-to-person contacts, but also via contaminated surfaces. Prior work in mathematical epidemiology has led to a class of models – which we call load sharing models – that provide a discrete-time, stochastic formalization of HAI-spread on temporal contact networks. The focus of this paper is the source detection problem for the load sharing model. The source detection problem has been studied extensively in SEIR type models, but this prior work does not apply to load sharing models.We show that a natural formulation of the source detection problem for the load sharing model is computationally hard, even to approximate. We then present two alternate formulations that are much more tractable. The tractability of our problems depends crucially on the submodularity of the expected number of infections as a function of the source set. Prior techniques for showing submodularity, such as the "live graph" technique are not applicable for the load sharing model and our key technical contribution is to use a more sophisticated "coupling" technique to show the submodularity result. We propose algorithms for our two problem formulations by extending existing algorithmic results from submodular optimization and combining these with an expectation propagation heuristic for the load sharing model that leads to orders-of-magnitude speedup. We present experimental results on temporal contact networks based on fine-grained EMR data from three different hospitals. Our results on synthetic outbreaks on these networks show that our algorithms outperform baselines by up to 5.97 times. Furthermore, case studies based on hospital outbreaks of Clostridioides difficile infection show that our algorithms identify clinically meaningful sources.
more »
« less
- PAR ID:
- 10430064
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 4347 to 4355
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sexually transmitted diseases (STDs) are detrimental to the health and economic well-being of society. Consequently, predicting outbreaks and identifying effective disease interventions through epidemiological tools, such as compartmental models, is of the utmost importance. Unfortunately, the ordinary differential equation compartmental models attributed to the work of Kermack and McKendrick require a duration of infection that follows the exponential or Erlang distribution, despite the biological invalidity of such assumptions. As these assumptions negatively impact the quality of predictions, alternative approaches are required that capture how the variability in the duration of infection affects the trajectory of disease and the evaluation of disease interventions. So, we apply a new family of ordinary differential equation compartmental models based on the quantity person-days of infection to predict the trajectory of disease. Importantly, this new family of models features non-exponential and non-Erlang duration of infection distributions without requiring more complex integral and integrodifferential equation compartmental model formulations. As proof of concept, we calibrate our model to recent trends of chlamydia incidence in the U.S. and utilize a novel duration of infection distribution that features periodic hazard rates. We then evaluate how increasing STD screening rates alter predictions of incidence and disability adjusted life-years over a five-year horizon. Our findings illustrate that our family of compartmental models provides a better fit to chlamydia incidence trends than traditional compartmental models, based on Akaike information criterion. They also show new asymptomatic and symptomatic infections of chlamydia peak over drastically different time frames and that increasing the annual STD screening rates from 35% to 40%-70% would annually avert 6.1-40.3 incidence while saving 1.68-11.14 disability adjusted life-years per 1000 people. This suggests increasing the STD screening rate in the U.S. would greatly aid in ongoing public health efforts to curtail the rising trends in preventable STDs.more » « less
-
Ndeffo Mbah, Martial L (Ed.)The SARS-CoV-2 pandemic led to closure of nearly all K-12 schools in the United States of America in March 2020. Although reopening K-12 schools for in-person schooling is desirable for many reasons, officials understand that risk reduction strategies and detection of cases are imperative in creating a safe return to school. Furthermore, consequences of reclosing recently opened schools are substantial and impact teachers, parents, and ultimately educational experiences in children. To address competing interests in meeting educational needs with public safety, we compare the impact of physical separation through school cohorts on SARS-CoV-2 infections against policies acting at the level of individual contacts within classrooms. Using an age-stratified Susceptible-Exposed-Infected-Removed model, we explore influences of reduced class density, transmission mitigation, and viral detection on cumulative prevalence. We consider several scenarios over a 6-month period including (1) multiple rotating cohorts in which students cycle through in-person instruction on a weekly basis, (2) parallel cohorts with in-person and remote learning tracks, (3) the impact of a hypothetical testing program with ideal and imperfect detection, and (4) varying levels of aggregate transmission reduction. Our mathematical model predicts that reducing the number of contacts through cohorts produces a larger effect than diminishing transmission rates per contact. Specifically, the latter approach requires dramatic reduction in transmission rates in order to achieve a comparable effect in minimizing infections over time. Further, our model indicates that surveillance programs using less sensitive tests may be adequate in monitoring infections within a school community by both keeping infections low and allowing for a longer period of instruction. Lastly, we underscore the importance of factoring infection prevalence in deciding when a local outbreak of infection is serious enough to require reverting to remote learning.more » « less
-
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R 0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.more » « less
-
We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for vector-borne disease evolution. We take into account climate data and seasonality as external factors that correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme motivated by recommendation systems. The neighboring regions’ influence is modeled by a long short-term memory neural network. The integrated model is trained by stochastic gradient descent and tested on leishmaniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred. Our model out-performed ARIMA models across a number of regions with high infections, and an associated ablation study renders support to our modeling hypothesis and ideas.more » « less
An official website of the United States government

