skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computations of the shear stresses distribution experienced by passive particles as they circulate in turbulent flow: A case study for vWF protein molecules
The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage.  more » « less
Award ID(s):
1803014
PAR ID:
10430645
Author(s) / Creator(s):
; ; ;
Editor(s):
Borazjani, Iman
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0273312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime. 
    more » « less
  2. The correlation between helicity and turbulent transport in turbulent flows is probed with the use of direct numerical simulation and Lagrangian scalar tracking. Channel flow and plane Couette flow at friction Reynolds number 300 and Lagrangian data along the trajectories of fluid particles and passive particles with Schmidt numbers 0.7 and 6 are used. The goal is to identify characteristics of the flow that enhance turbulent transport from the wall, and how flow regions that exhibit these characteristics are related to helicity. The relationship between vorticity and relative helicity along particle trajectories is probed, and the relationship between the distribution of helicity conditioned on Reynolds stress quadrants is also evaluated. More importantly, the correlation between relative helicity density and the alignment of vorticity with velocity vectors and eigenvectors of the rate of strain tensor is presented. Separate computations for particles that disperse the farthest into the flow field and those that disperse the least are conducted to determine the flow structures that contribute to turbulent dispersion. The joint distribution of helicity and vertical velocity, and helicity and vertical vorticity depends on the location of particle release and the Schmidt number. The trajectories of particles that disperse the least are characterized by a correlation between the absolute value of the relative helicity density and the absolute value of the cosine between the vorticity vector and the eigenvectors of the rate of strain tensor, while the value of this correlation approaches zero for the particles that disperse the most. 
    more » « less
  3. The relation between the helicity and the rate of dissipation of turbulent kinetic energy in turbulent flows has been a matter of debate. Herein, direct numerical simulations of turbulent Poiseuille and Couette flow were used in combination with the tracking of helicity, helicity density, and dissipation along the trajectories of passive scalar markers to probe the correlation between helicity and dissipation in anisotropic turbulence. The Schmidt number of the scalar markers varied between 0.7, 6, and infinite (i.e., fluid particles), while the friction Reynolds number for both simulations was 300. The probing tools were the autocorrelation coefficients, the cross correlation coefficients between helicity and dissipation, and the joint probability density function calculated in the Lagrangian framework along the positions of the scalar markers. These markers were released at different locations within the flow field, including the viscous wall sublayer, the transition layer, the logarithmic region, and the outer flow. In addition, conditional statistics for scalar markers that dispersed most or least in the flow field were also calculated. It was found that helicity and dissipation changed along the trajectories of scalar markers; however, helicity and dissipation were not correlated in the Lagrangian framework. There was anticorrelation between helicity and dissipation in the near wall region, which was less obvious in the logarithmic region. More importantly, helicity could be used to characterize the alignment of the fluctuating velocity and vorticity vectors along the trajectories of scalar markers that disperse the farthest in the direction normal to the channel wall. 
    more » « less
  4. Abstract BackgroundPatients with continuous flow ventricular assist devices (CF‐VADs) are at high risk for non‐surgical bleeding, speculated to associate with the loss of pulsatility following CF‐VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored. MethodsvWF molecules were immobilized on the surface of microfluidic devices and subjected to various pulsatile flow profiles, including continuous flow and pulsatile flow of different magnitudes,dQ/dt(i.e., first derivative of flow rate) of pulsatility and pulse frequencies to mimic in vivo shear flow environments with and without CF‐VAD support. VWF elongation was observed using total internal reflection fluorescence (TIRF) microscopy. Besides, the vWF level is measured from the patients’ blood sample before and after CF‐VAD implantation from a clinical perspective. To our knowledge, this work is the first in providing direct, visual observation of single vWF molecule extension under controlled‐pulsatile shear flow. ResultsUnravelling of vWF (total sample sizen ~ 200 molecules) is significantly reduced under pulsatile flow (p < 0.01) compared to continuous flow. An increase in the magnitude of pulsatility further reduces unravelling lengths, while lower frequency of pulsatility (20 vs. 60 pulses per min) does not have a major effect on the maximum or minimum unravelling lengths. Evaluation of CF‐VAD patient blood samples (n = 13) demonstrates that vWF levels decreased by ~40% following CF‐VAD placement (p < 0.01), which correlates to single‐molecule observations from a clinical point of view. ConclusionsPulsatile flow reduces unfolding of vWF compared to continuous flow and a lower pulse frequency of 20 pulses/minute yielded comparable vWF unfolding to 60 pulses/minute. These findings could shed light on non‐surgical bleeding associated with the loss of pulsatility following CF‐VAD placement. 
    more » « less
  5. Hypothesis: The viscosity of dense suspensions surges when the applied stress surpasses a material-specific critical threshold. There is growing evidence that the thickening transition involves non-uniform flow and stress with considerable spatiotemporal complexity. Nevertheless, it is anticipated that dense suspensions of calcium carbonate particles with purely repulsive interactions may not conform to this scenario, as indicated by local pressure measurements with millimeter spatial resolution. Experiment: Here we utilize Boundary Stress Microscopy (BSM), a technique capable of resolving stresses down to the micron scale, to search for evidence of stress heterogeneity. In addition, we measure the flow field at the lower boundary of the suspension where the boundary stress is measured. Findings: We find localized regions of high-stresses that are extended in the vorticity direction and propagate in the flow direction at a speed approximately half that of the rheometer’s top plate. These high-stress regions proliferate with the applied stress accounting for the increased viscosity. Furthermore, the velocity of particles at the lower boundary of the suspension shows a significant and complex nonaffine flow that accompanies regions of high-stresses. Hence, our findings demonstrate that stress and flow inhomogeneity are intrinsic characteristics of shear-thickening suspensions, regardless of the nature of interparticle interactions. 
    more » « less