Using the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMD) for nonsequential double ionization (NSDI) of Ar by near-single-cycle laser pulses with a wavelength of 750 nm at an intensity of 2.8 × 1014W/cm2. With the accurate cross sections obtained from fully quantum mechanical calculations for both electron impact excitation and electron impact ionization of Ar+, we unambiguously identify the contributions from recollision direct ionization (RDI) and recollision excitation with subsequent ionization (RESI). Our analysis reveals that RESI constitutes the main contribution to NSDI of Ar under the conditions considered here. The simulated results are directly compared with experimental measurements [Bergues
Within the framework of the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization (NSDI) of Ar by elliptically polarized laser pulses with a wavelength of 788 nm at an intensity of 0.7 × 1014W/cm2for the ellipticities ranging from 0 to 0.3. Only the CMDs for recollision excitation with subsequent ionization (RESI) are calculated and the contribution from recollision direct ionization is neglected. According to the QRS model, the CMD for RESI can be factorized as a product of the parallel momentum distribution (PMD) for the first released electron after recollision and the PMD for the second electron ionized from an excited state of the parent ion. The PMD for the first electron is obtained from the laser-free differential cross sections for electron impact excitation of Ar+calculated using state-of-the-art many-electron
- NSF-PAR ID:
- 10380532
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 24
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 44039
- Size(s):
- Article No. 44039
- Sponsoring Org:
- National Science Foundation
More Like this
-
et al. , ] in which each NSDI event is tagged with the carrier-envelope phase (CEP). It is found that the overall pattern of both the CEP-resolved and the CEP-averaged CMDs measured in experiment are well reproduced by the QRS model, and the cross-shaped structure in the CEP-averaged CMD is attributed to the strong forward scattering of the recolliding electron as well as the depletion effect in tunneling ionization of the electron from an excited state of the parent ion.3 ,813 (2012 )10.1038/ncomms1807 -
Using the quantitative rescattering model, we simulate the correlated two-electron momentum distributions for nonsequential double ionization of helium by 800 nm laser pulses at intensities in the range of (2 − 15) × 1014W/cm2. The experimentally observed V-shaped structure at high intensities [
] is attributed to the strong forward scattering in laser-induced recollision excitation and the asymmetric momentum distribution of electrons that are tunneling-ionized from the excited states. The final-state electron repulsion also plays an important role in forming the V-shaped structure.99 ,263003 (2007 )10.1103/PhysRevLett.99.263003 -
A practical ab initio composite method for modeling x-ray absorption and non-resonant x-ray emission is presented. Vertical K-edge excitation and emission energies are obtained from core-electron binding energies calculated with spin-projected ΔHF/ΔMP and outer-core ionization potentials/electron affinities calculated with electron propagator theory. An assessment of the combined methodologies against experiment is performed for a set of small molecules containing second-row elements.
-
Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013cm−2if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent’ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.
-
Abstract Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH * , PAH +* and PAH 2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH 2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.more » « less