Abstract Quantum repeater is an essential ingredient for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable quantum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman–Kitaev–Preskill code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of entanglement-assisted communication, target detection based on quantum illumination and CV quantum key distribution, as three representative use cases for quantum communication and sensing. 
                        more » 
                        « less   
                    
                            
                            Improving metrology with quantum scrambling
                        
                    
    
            Quantum scrambling, the distribution of information across a quantum system, can enhance precision measurements. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10431132
- Date Published:
- Journal Name:
- Science
- Volume:
- 380
- Issue:
- 6652
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1381 to 1384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum computation among quantum computers. In this work, we describe a quantum walk protocol to perform distributed quantum computing in a quantum network. The protocol uses a quantum walk as a quantum control signal to perform distributed quantum operations. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between a quantum walker system in the network graph with quantum registers inside the network nodes. The protocol logically captures distributed quantum computing, abstracting hardware implementation and the transmission of quantum information through channels. Control signal transmission is mapped to the propagation of the walker system across the network, while interactions between the control layer and the quantum registers are embedded into the application of coin operators. We demonstrate how to use the quantum walker system to perform a distributed CNOT operation, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the protocol to the task of entanglement distribution in a quantum network.more » « less
- 
            The study of quantum generative models is well-motivated, not only because of its importance in quantum machine learning and quantum chemistry but also because of the perspective of its implementation on near-term quantum machines. Inspired by previous studies on the adversarial training of classical and quantum generative models, we propose the first design of quantum Wasserstein Generative Adversarial Networks (WGANs), which has been shown to improve the robustness and the scalability of the adversarial training of quantum generative models even on noisy quantum hardware. Specifically, we propose a definition of the Wasserstein semimetric between quantum data, which inherits a few key theoretical merits of its classical counterpart. We also demonstrate how to turn the quantum Wasserstein semimetric into a concrete design of quantum WGANs that can be efficiently implemented on quantum machines. Our numerical study, via classical simulation of quantum systems, shows the more robust and scalable numerical performance of our quantum WGANs over other quantum GAN proposals. As a surprising application, our quantum WGAN has been used to generate a 3-qubit quantum circuit of ~50 gates that well approximates a 3-qubit 1-d Hamiltonian simulation circuit that requires over 10k gates using standard techniques.more » « less
- 
            Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in quantum networks. Modeled as quantum communication channels, performance of unidirectional quantum transducers can be measured by the quantum channel capacity. However, characterizing performance of quantum transducers used as bidirectional communication channels remains an open question. Here, we propose rate regions to characterize the performance of quantum transducers in the bidirectional scenario. Using this tool, we find that quantum transducers optimized for simultaneous bidirectional transduction can outperform strategies based on the standard protocol of time-shared unidirectional quantum transduction. Integrated over the frequency domain, we demonstrate that rate region can also characterize quantum transducers with finite bandwidth.more » « less
- 
            Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    