skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature variations in the northern Gulf of Alaska across synoptic to century-long time scales
Surface and subsurface moored buoy, ship-based, remotely sensed, and reanalysis datasets are used to investigate thermal variability of northern Gulf of Alaska (NGA) nearshore, coastal, and offshore waters over synoptic to century-long time scales. NGA sea surface temperature (SST) showed a larger positive trend of 0.22 ± 0.10 °C per decade over 1970–2021 compared to 0.10 ± 0.03 °C per decade over 1900–2021. Over synoptic time scales, SST covariance between two stations is small (<10%) when separation exceeds 100 km, while stations separated by 500 km retain 50% of their co-variability for seasonal and longer fluctuations. Relative to in situ sensor data, remotely sensed SST data has limited accuracy in some NGA settings, capturing 60–70% of the daily SST anomaly in coastal and offshore waters, but often <25% nearshore. North Pacific and NGA leading modes of SST variability leave 25–50% of monthly variance unresolved. Analysis of the 2014–2016 Pacific marine heatwave shows that NGA coastal surface temperatures warmed contemporaneously with offshore waters through 2013, but deep inner shelf waters (200–250 m) exhibited delayed warming. Offshore surface waters cooled from 2014 to 2016, while shelf waters continued to warm from the combined effects of local air-sea and advective heat fluxes. We find that annually averaged Sitka air temperature is a leading predictor (r2 = 0.37, p < 0.05) for following-year NGA coastal water column temperature. Our results can inform future environmental monitoring designs, assist forward-looking projections of marine conditions, and show the importance of in situ measurements for nearshore studies that require knowledge of thermal conditions over time scales of days and weeks.  more » « less
Award ID(s):
1656070
PAR ID:
10468071
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Deep Sea Research Part II: Topical Studies in Oceanography
Volume:
203
Issue:
C
ISSN:
0967-0645
Page Range / eLocation ID:
105155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient-poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the fine-scale spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provide a synoptic view of phytoplankton dynamics over a four-year, near-monthly time-series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we elucidated a sharp and persistent transition between picocyanobacterial communities, from Synechococcus abundant in the nearshore to Prochlorococcus proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kānʻeohe Bay was dramatically elevated. While phytoplankton community composition revealed strong seasonal patterns, phytoplankton biomass positively correlated with wind speeds, rainfall, and wind direction, and not water temperatures. These findings reveal sharp transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change. 
    more » « less
  2. Abstract We analyzed impacts of the 2014–2015 Pacific Warm Anomaly and 2015–2016 El Niño on physical and biogeochemical variables at two southern California Current System moorings (CCE2, nearshore upwelling off Point Conception; CCE1, offshore California Current). Nitrate and Chl‐afluorescence were <1 μM and <1 Standardized Fluorescence Unit, respectively, at CCE2 for the entire durations of the Warm Anomaly and El Niño, the two longest periods of such low values in our time series. Negative nitrate and Chl‐aanomalies at CCE2 were interrupted briefly by upwelling conditions in spring 2015. Near‐surface temperature anomalies appeared simultaneously at both moorings in spring 2014, indicating region‐wide onset of Warm Anomaly temperatures, although sustained negative nitrate and Chl‐aanomalies only occurred offshore at CCE1 during El Niño (summer 2015 to spring 2016). Warm Anomaly temperature changes were expressed more strongly in near‐surface (<40 m) than subsurface (75 m) waters at both moorings, while El Niño produced comparable temperature anomalies at near‐surface and subsurface depths. Nearshore Ωaragoniteat 76 m showed notably fewer undersaturation events during both warm periods, suggesting an environment more conducive to calcifying organisms. Planktonic calcifying molluscs (pteropods and heteropods) increased markedly in springs 2014 and 2016 and remained modestly elevated in spring 2015. Moorings provide high‐frequency measurements essential for resolving the onset timing of anomalous conditions and frequency and duration of short‐term (days‐to‐weeks) perturbations (reduced nitrate and aragonite undersaturation events) that can affect marine organisms. 
    more » « less
  3. Abstract Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient‐poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provides a synoptic view of phytoplankton dynamics over a 4‐yr, near‐monthly time series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we observed a sharp and persistent transition between picocyanobacterial communities, fromSynechococcusclade II abundant in the nearshore toProchlorococcushigh‐light adapted clade II (HLII) proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kāneʻohe Bay was dramatically elevated. Members of the phytoplankton community revealed strong seasonal patterns, while nearshore phytoplankton biomass positively correlated with wind speed, rainfall, and wind direction, and not water temperatures. These findings elucidate the spatiotemporal dynamics underlying transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change. 
    more » « less
  4. The biologically productive Northern Gulf of Alaska (NGA) continental shelf receives large inputs of freshwater from surrounding glaciated and non-glaciated watersheds, and a better characterization of the regional salinity spatiotemporal variability is important for understanding its fate and ecological roles. We here assess synoptic to seasonal distributions of freshwater pathways of the Copper River discharge plume and the greater NGA continental shelf and slope using observations from ship-based and towed undulating conductivity-temperaturedepth (CTD) instruments, satellite imagery, and satellite-tracked drifters. On the NGA continental shelf and slope we find low salinities not only nearshore but also 100–150 km from the coast (i.e. average 0–50 m salinities less than 31.9, 31.3, and 30.8 in spring, summer, and fall respectively) indicating recurring mid-shelf and shelfbreak freshwater pathways. Close to the Copper River, the shelf bathymetry decouples the spreading river plume from the direct effects of seafloor-induced steering and mixing, allowing iron- and silicic acid-rich river outflow to propagate offshore within a surface-trapped plume. Self-organized mapping analysis applied to true color satellite imagery reveals common patterns of the turbid river plume. We show that the Copper River plume is sensitive to local wind forcing and exerts control over water column stratification up to ~100 km from the river mouth. Upwelling-favorable wind stress modifies plume entrainment and density anomalies and plume width. Baroclinic transport of surface waters west of the river mouth closely follow the influence of alongshore wind stress, while baroclinic transport east of the river mouth is additionally modified by a recurring or persistent gyre. Our results provide context for considering the oceanic fate of terrestrial discharges in the Gulf of Alaska. 
    more » « less
  5. Hydrogen peroxide (H 2 O 2 ) is an important reactive oxygen species (ROS) in natural waters, affecting water quality via participation in metal redox reactions and causing oxidative stress for marine ecosystems. While attempts have been made to better understand H 2 O 2 dynamics in the global ocean, the relative importance of various H 2 O 2 sources and losses remains uncertain. Our model improves previous estimates of photochemical H 2 O 2 production rates by using remotely sensed ocean color to characterize the ultraviolet (UV) radiation field in surface water along with quantitative chemical data for the photochemical efficiency of H 2 O 2 formation. Wavelength- and temperature-dependent efficiency (i.e., apparent quantum yield, AQY) spectra previously reported for a variety of seawater sources, including coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and several sites along the eastern coast of the United States were compiled to obtain a “marine-average” AQY spectrum. To evaluate our predictions of H 2 O 2 photoproduction in surface waters using this single AQY spectrum, we compared modeled rates to new measured rates from Gulf Stream, coastal, and nearshore river-outflow stations in the South Atlantic Bight, GA, United States; obtaining comparative differences of 33% or less. In our global model, the “marine-average” AQY spectrum was used with modeled solar irradiance, together with satellite-derived surface seawater temperature and UV optical properties, including diffuse attenuation coefficients and dissolved organic matter absorption coefficients estimated with remote sensing-based algorithms. The final product of the model, a monthly climatology of depth-resolved H 2 O 2 photoproduction rates in the surface mixed layer, is reported for the first time and provides an integrated global estimate of ∼21.1 Tmol yr −1 for photochemical H 2 O 2 production. This work has important implications for photo-redox reactions in seawater and improves our understanding of the role of solar irradiation on ROS cycling and the overall oxidation state in the oceans. 
    more » « less