skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: On robot grasp learning using equivariant models
Abstract Real-world grasp detection is challenging due to the stochasticity in grasp dynamics and the noise in hardware. Ideally, the system would adapt to the real world by training directly on physical systems. However, this is generally difficult due to the large amount of training data required by most grasp learning models. In this paper, we note that the planar grasp function is $\textrm{SE}(2)$ -equivariant and demonstrate that this structure can be used to constrain the neural network used during learning. This creates an inductive bias that can significantly improve the sample efficiency of grasp learning and enable end-to-end training from scratch on a physical robot with as few as 600 grasp attempts. We call this method Symmetric Grasp learning (SymGrasp) and show that it can learn to grasp “from scratch” in less that 1.5 h of physical robot time. This paper represents an expanded and revised version of the conference paper Zhu et al. (2022).  more » « less
Award ID(s):
2134178 2107256
PAR ID:
10431750
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Autonomous Robots
ISSN:
0929-5593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile robot navigation is a critical aspect of robotics, with applications spanning from service robots to industrial automation. However, navigating in complex and dynamic environments poses many challenges, such as avoiding obstacles, making decisions in real-time, and adapting to new situations. Reinforcement Learning (RL) has emerged as a promising approach to enable robots to learn navigation policies from their interactions with the environment. However, application of RL methods to real-world tasks such as mobile robot navigation, and evaluating their performance under various training–testing settings has not been sufficiently researched. In this paper, we have designed an evaluation framework that investigates the RL algorithm’s generalization capability in regard to unseen scenarios in terms of learning convergence and success rates by transferring learned policies in simulation to physical environments. To achieve this, we designed a simulated environment in Gazebo for training the robot over a high number of episodes. The training environment closely mimics the typical indoor scenarios that a mobile robot can encounter, replicating real-world challenges. For evaluation, we designed physical environments with and without unforeseen indoor scenarios. This evaluation framework outputs statistical metrics, which we then use to conduct an extensive study on a deep RL method, namely the proximal policy optimization (PPO). The results provide valuable insights into the strengths and limitations of the method for mobile robot navigation. Our experiments demonstrate that the trained model from simulations can be deployed to the previously unseen physical world with a success rate of over 88%. The insights gained from our study can assist practitioners and researchers in selecting suitable RL approaches and training–testing settings for their specific robotic navigation tasks.

     
    more » « less
  2. There has been significant recent work on data-driven algorithms for learning general-purpose grasping policies. However, these policies can consis- tently fail to grasp challenging objects which are significantly out of the distribution of objects in the training data or which have very few high quality grasps. Moti- vated by such objects, we propose a novel problem setting, Exploratory Grasping, for efficiently discovering reliable grasps on an unknown polyhedral object via sequential grasping, releasing, and toppling. We formalize Exploratory Grasping as a Markov Decision Process where we assume that the robot can (1) distinguish stable poses of a polyhedral object of unknown geometry, (2) generate grasp can- didates on these poses and execute them, (3) determine whether each grasp is successful, and (4) release the object into a random new pose after a grasp success or topple the object after a grasp failure. We study the theoretical complexity of Exploratory Grasping in the context of reinforcement learning and present an efficient bandit-style algorithm, Bandits for Online Rapid Grasp Exploration Strategy (BORGES), which leverages the structure of the problem to efficiently discover high performing grasps for each object stable pose. BORGES can be used to complement any general-purpose grasping algorithm with any grasp modality (parallel-jaw, suction, multi-fingered, etc) to learn policies for objects in which they exhibit persistent failures. Simulation experiments suggest that BORGES can significantly outperform both general-purpose grasping pipelines and two other online learning algorithms and achieves performance within 5% of the optimal policy within 1000 and 8000 timesteps on average across 46 challenging objects from the Dex-Net adversarial and EGAD! object datasets, respectively. Initial physical experiments suggest that BORGES can improve grasp success rate by 45% over a Dex-Net baseline with just 200 grasp attempts in the real world. See https://tinyurl.com/exp-grasping for supplementary material and videos. 
    more » « less
  3. Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92% real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom. 
    more » « less
  4. Aleksandra Faust, David Hsu (Ed.)
    Modern Reinforcement Learning (RL) algorithms are not sample efficient to train on multi-step tasks in complex domains, impeding their wider deployment in the real world. We address this problem by leveraging the insight that RL models trained to complete one set of tasks can be repurposed to complete related tasks when given just a handful of demonstrations. Based upon this insight, we propose See-SPOT-Run (SSR), a new computational approach to robot learning that enables a robot to complete a variety of real robot tasks in novel problem domains without task-specific training. SSR uses pretrained RL models to create vectors that represent model, task, and action relevance in demonstration and test scenes. SSR then compares these vectors via our Cycle Consistency Distance (CCD) metric to determine the next action to take. SSR completes 58% more task steps and 20% more trials than a baseline few-shot learning method that requires task-specific training. SSR also achieves a four order of magnitude improvement in compute efficiency and a 20% to three order of magnitude improvement in sample efficiency compared to the baseline and to training RL models from scratch. To our knowledge, we are the first to address multi-step tasks from demonstration on a real robot without task-specific training, where both the visual input and action space output are high dimensional. Code is available in the supplement. 
    more » « less
  5. Practical robot applications that require grasping often fail due to failed grasp planning, and a good grasp quality measure is the key to successful grasp planning. In this paper, we developed a novel grasp quality measure that quantifies and evaluates grasp quality in real-time. To quantify the grasp quality, we compute a set of object movement features from analyzing the interaction between the gripper and the object’s projections in the image space. The normalizations and weights of the features are tuned to make practical and intuitive grasp quality predictions. To evaluate our grasp quality measure, we conducted a real robot grasping experiment with 1000 robot grasp trials on ten household objects to examine the relationship between our grasp scores and the actual robot grasping results. The results show that the average grasp success rate increases, and the average amount of undesired object movement decrease as the calculated grasp score increases, which validates our quality measure. We achieved a 100% grasp success rate from 100 grasps of the ten objects when using our grasp quality measure in planning top quality grasps. 
    more » « less