Road authorities worldwide can leverage the advances in vehicle technology by continuously monitoring their roads’ conditions to minimize road maintenance costs. The existing methods for carrying out road condition surveys involve manual observations using standard survey forms, performed by qualified personnel. These methods are expensive, time-consuming, infrequent, and can hardly provide real-time information. Some automated approaches also exist but are very expensive since they require special vehicles equipped with computing devices and sensors for data collection and processing. This research aims to leverage the advances in vehicle technology in providing a cheap and real-time approach to carry out road condition monitoring (RCM). This study developed a deep learning model using the You Only Look Once, Version 5 (YOLOv5) algorithm that was trained to capture and categorize flexible pavement distresses (FPD) and reached 95% precision, 93.4% recall, and 97.2% mean Average Precision. Using vehicle built-in cameras and GPS sensors, these distresses were detected, images were captured, and locations were recorded. This was validated on campus roads and parking lots using a car featured with a built-in camera and GPS. The vehicles’ built-in technologies provided a more cost-effective and efficient road condition monitoring approach that could also provide real-time road conditions.
more »
« less
Pavement Distress Identification Based on Computer Vision and Controller Area Network (CAN) Sensor Models
Recent technological developments have attracted the use of machine learning technologies and sensors in various pavement maintenance and rehabilitation studies. To avoid excessive road damages, which cause high road maintenance costs, reduced mobility, vehicle damages, and safety concerns, the periodic maintenance of roads is necessary. As part of maintenance works, road pavement conditions should be monitored continuously. This monitoring is possible using modern distress detection methods that are simple to use, comparatively cheap, less labor-intensive, faster, safer, and able to provide data on a real-time basis. This paper proposed and developed two models: computer vision and sensor-based. The computer vision model was developed using the You Only Look Once (YOLOv5) algorithm for detecting and classifying pavement distresses into nine classes. The sensor-based model combined eight Controller Area Network (CAN) bus sensors available in most new vehicles to predict pavement distress. This research employed an extreme gradient boosting model (XGBoost) to train the sensor-based model. The results showed that the model achieved 98.42% and 97.99% area under the curve (AUC) metrics for training and validation datasets, respectively. The computer vision model attained an accuracy of 81.28% and an F1-score of 76.40%, which agree with past studies. The results indicated that both computer vision and sensor-based models proved highly efficient in predicting pavement distress and can be used to complement each other. Overall, computer vision and sensor-based tools provide cheap and practical road condition monitoring compared to traditional manual instruments.
more »
« less
- PAR ID:
- 10431852
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 15
- Issue:
- 8
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 6438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pavement surveying and distress mapping is completed by roadway authorities to quantify the topical and structural damage levels for strategic preventative or rehabilitative action. The failure to time the preventative or rehabilitative action and control distress propagation can lead to severe structural and financial loss of the asset requiring complete reconstruction. Continuous and computer-aided surveying measures not only can eliminate human error when analyzing, identifying, defining, and mapping pavement surface distresses, but also can provide a database of road damage patterns and their locations. The database can be used for timely road repairs to gain the maximum durability of the asphalt and the minimum cost of maintenance. This paper introduces an autonomous surveying scheme to collect, analyze, and map the image-based distress data in real time. A descriptive approach is considered for identifying cracks from collected images using a convolutional neural network (CNN) that classifies several types of cracks. Typically, CNN-based schemes require a relatively large processing power to detect desired objects in images in real time. However, the portability objective of this work requires to utilize low-weight processing units. To that end, the CNN training was optimized by the Bayesian optimization algorithm (BOA) to achieve the maximum accuracy and minimum processing time with minimum neural network layers. First, a database consisting of a diverse population of crack distress types such as longitudinal, transverse, and alligator cracks, photographed at multiple angles, was prepared. Then, the database was used to train a CNN whose hyperparameters were optimized using BOA. Finally, a heuristic algorithm is introduced to process the CNN’s output and produce the crack map. The performance of the classifier and mapping algorithm is examined against still images and videos captured by a drone from cracked pavement. In both instances, the proposed CNN was able to classify the cracks with 97% accuracy. The mapping algorithm is able to map a diverse population of surface cracks patterns in real time at the speed of 11.1 km per hour.more » « less
-
Weight data of vehicles play an important role in traffic planning, weight enforcement, and pavement condition assessment. In this paper, a weigh-in-motion (WIM) system that functions at both low-speeds and high-speeds in flexible pavements is developed based on in-pavement, three-dimensional glass-fiber-reinforced, polymer-packaged fiber Bragg grating sensors (3D GFRP-FBG). Vehicles passing over the pavement produce strains that the system monitors by measuring the center wavelength changes of the embedded 3D GFRP-FBG sensors. The FBG sensor can estimate the weight of vehicles because of the direct relationship between the loading on the pavement and the strain inside the pavement. A sensitivity study shows that the developed sensor is very sensitive to sensor installation depth, pavement property, and load location. Testing in the field validated that the longitudinal component of the sensor if not corrected by location has a measurement accuracy of 86.3% and 89.5% at 5 mph and 45 mph vehicle speed, respectively. However, the system also has the capability to estimate the location of the loading position, which can enhance the system accuracy to more than 94.5%.more » « less
-
Pavement surface distresses are analyzed by transportation agencies to determine section performance across their pavement networks. To efficiently collect and evaluate thousands of lane-miles, automated processes utilizing image-capturing techniques and detection algorithms are applied to perform these tasks. However, the precision of this novel technology often leads to inaccuracies that must be verified by pavement engineers. Developments in artificial intelligence and machine learning (AI/ML) can aid in the progress of more robust and precise detection algorithms. Deep learning models are efficient for visual distress identification of pavement. With the use of 2D/3D pavement images, surface distress analysis can help train models to efficiently detect and classify surface distresses that may be caused by traffic loading, weather, aging, and other environmental factors. The formation of these distresses is developing at a higher rate in coastal regions, where extreme weather phenomena are more frequent and intensive. This study aims to develop a YOLOv5 model with 2D/3D images collected in the states of Louisiana, Mississippi, and Texas in the U.S. to establish a library of data on pavement sections near the Gulf of Mexico. Images with a resolution of 4096 × 2048 are annotated by utilizing bounding boxes based on a class list of nine distress and non-distress objects. Along with emphasis on efforts to detect cracks in the presence of background noise on asphalt pavements, six scenarios for augmentation were made to evaluate the model’s performance based on flip probability in the horizontal and vertical directions. The YOLOv5 models are able to detect defined distresses consistently, with the highest mAP50 scores ranging from 0.437 to 0.462 throughout the training scenarios.more » « less
-
An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer WorkSeveral unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors’ efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use.more » « less
An official website of the United States government

