skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Road Condition Monitoring Using Vehicle Built-in Cameras and GPS Sensors: A Deep Learning Approach
Road authorities worldwide can leverage the advances in vehicle technology by continuously monitoring their roads’ conditions to minimize road maintenance costs. The existing methods for carrying out road condition surveys involve manual observations using standard survey forms, performed by qualified personnel. These methods are expensive, time-consuming, infrequent, and can hardly provide real-time information. Some automated approaches also exist but are very expensive since they require special vehicles equipped with computing devices and sensors for data collection and processing. This research aims to leverage the advances in vehicle technology in providing a cheap and real-time approach to carry out road condition monitoring (RCM). This study developed a deep learning model using the You Only Look Once, Version 5 (YOLOv5) algorithm that was trained to capture and categorize flexible pavement distresses (FPD) and reached 95% precision, 93.4% recall, and 97.2% mean Average Precision. Using vehicle built-in cameras and GPS sensors, these distresses were detected, images were captured, and locations were recorded. This was validated on campus roads and parking lots using a car featured with a built-in camera and GPS. The vehicles’ built-in technologies provided a more cost-effective and efficient road condition monitoring approach that could also provide real-time road conditions.  more » « less
Award ID(s):
2131080 1954532 1719501
PAR ID:
10466619
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Vehicles
Date Published:
Journal Name:
Vehicles
Volume:
5
Issue:
3
ISSN:
2624-8921
Page Range / eLocation ID:
931 to 948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent technological developments have attracted the use of machine learning technologies and sensors in various pavement maintenance and rehabilitation studies. To avoid excessive road damages, which cause high road maintenance costs, reduced mobility, vehicle damages, and safety concerns, the periodic maintenance of roads is necessary. As part of maintenance works, road pavement conditions should be monitored continuously. This monitoring is possible using modern distress detection methods that are simple to use, comparatively cheap, less labor-intensive, faster, safer, and able to provide data on a real-time basis. This paper proposed and developed two models: computer vision and sensor-based. The computer vision model was developed using the You Only Look Once (YOLOv5) algorithm for detecting and classifying pavement distresses into nine classes. The sensor-based model combined eight Controller Area Network (CAN) bus sensors available in most new vehicles to predict pavement distress. This research employed an extreme gradient boosting model (XGBoost) to train the sensor-based model. The results showed that the model achieved 98.42% and 97.99% area under the curve (AUC) metrics for training and validation datasets, respectively. The computer vision model attained an accuracy of 81.28% and an F1-score of 76.40%, which agree with past studies. The results indicated that both computer vision and sensor-based models proved highly efficient in predicting pavement distress and can be used to complement each other. Overall, computer vision and sensor-based tools provide cheap and practical road condition monitoring compared to traditional manual instruments. 
    more » « less
  2. Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient. 
    more » « less
  3. This paper presents GeoDMA , which processes the GPS data from multiple vehicles to detect anomalous driving maneuvers, such as rapid acceleration, sudden braking, and rapid swerving. First, an unsupervised deep auto-encoder is designed to learn a set of unique features from the normal historical GPS data of all drivers. We consider the temporal dependency of the driving data for individual drivers and the spatial correlation among different drivers. Second, to incorporate the peer dependency of drivers in local regions, we develop a geographical partitioning algorithm to partition a city into several sub-regions to do the driving anomaly detection. Specifically, we extend the vehicle-vehicle dependency to road-road dependency and formulate the geographical partitioning problem into an optimization problem. The objective of the optimization problem is to maximize the dependency of roads within each sub-region and minimize the dependency of roads between any two different sub-regions. Finally, we train a specific driving anomaly detection model for each sub-region and perform in-situ updating of these models by incremental training. We implement GeoDMA in Pytorch and evaluate its performance using a large real-world GPS trajectories. The experiment results demonstrate that GeoDMA achieves up to 8.5% higher detection accuracy than the baseline methods. 
    more » « less
  4. Effective road traffic assessment and estimation is crucial not only for traffic management applications, but also for long-term trans- portation and, more generally, urban planning. Traditionally, this task has been achieved by using a network of stationary traffic count sensors. These costly and unreliable sensors have been replaced with so-called Probe Vehicle Data (PVD), which relies on sampling individual vehicles in traffic using for example smartphones to assess the overall traffic condition. While PVD provides uniform road network coverage, it does not capture the actual traffic flow. On the other hand, stationary sensors capture the absolute traffic flow only at discrete locations. Furthermore, these sensors are often unreliable; temporary mal- functions create gaps in their time-series of measurements. This work bridges the gap between these two data sources by learning the time-dependent fraction of vehicles captured by GPS-based probe data at discrete stationary sensor locations. We can then account for the gaps of the traffic-loop measurements by using the PVD data to estimate the actual total flow. In this work, we show that the PVD flow capture changes sig- nificantly over time in the Washington DC area. Exploiting this information, we are able to derive tight confidence intervals of the traffic volume for areas with no stationary sensor coverage. 
    more » « less
  5. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less