This article introduces a novel, low-cost technique for hiding data in commercially available resistive-RAM (ReRAM) chips. The data is kept hidden in ReRAM cells by manipulating its analog physical properties through switching (set/reset) operations. This hidden data, later, is retrieved by sensing the changes in cells’ physical properties (i.e., set/reset time of the memory cells). The proposed system-level hiding technique does not affect normal memory operations and does not require any hardware modifications. Furthermore, the proposed hiding approach is robust against temperature variations and the aging of the devices through normal read/write operation. The silicon results show that our proposed data hiding technique is acceptably fast with ∼0.12bit/s of encoding and ∼3.26Kbits/s of retrieval rates, and the hidden message is unrecoverable without the knowledge of the secret key, which is used to enhance the security of hidden information.
more »
« less
Hide-and-Seek: Hiding Secrets in Threshold Voltage Distributions of NAND Flash Memory Cells
In this paper, we propose a new page-writing technique to hide secret information using the threshold voltage variation of programmed memory cells. We demonstrate the proposed technique on the state-of-the-art commercial 3D NAND flash memory chips by utilizing common user mode commands. We explore the design space metrics of interest for data hiding: bit accuracy of public and secret data and detectability of holding secret data. The proposed method ensures more than 97% accuracy of recovered secret data, with negligible accuracy loss in the public data. Our analysis shows that the proposed technique introduces negligible distortions in the threshold voltage distributions. These distortions are lower than the inherent threshold voltage variations of program states. As a result, the proposed method provides a hiding technique that is undetectable, even by a powerful adversary with low-level access to the memory chips.
more »
« less
- PAR ID:
- 10432059
- Date Published:
- Journal Name:
- Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File Systems
- Page Range / eLocation ID:
- 80 to 86
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Energy-efficient microprocessors are essential for a wide range of applications. While near-threshold computing is a promising technique to improve energy efficiency, optimal supply demands from logic core and on-chip memory are conflicting. In this paper, we perform static reliability analysis of 6T SRAM and discover the variance among different sizing configuration and asymmetric minimum voltage requirements between read and write operations. We leverage this asymmetric property i n near-threshold processors equipped with voltage boosting capability by proposing an opportunistic dual-supply switching scheme with a write aggregation buffer. Our results show that proposed technique improves energy efficiency by more than 21.45% with approximate 10.19% performance speed-up.more » « less
-
null (Ed.)Electronic device fingerprints, unique bit vectors extracted from device's physical properties, are used to differentiate between instances of functionally identical devices. This article introduces a new technique that extracts fingerprints from unique properties of partially erased NOR flash memory cells in modern microcontrollers. NOR flash memories integrated in modern systems-on-a-chip typically hold firmware and read-only data, but they are increasingly in-system-programmable, allowing designers to erase and program them during normal operation. The proposed technique leverages partial erase operations of flash memory segments that bring them into the state that exposes physical properties of the flash memory cells through a digital interface. These properties reflect semiconductor process variations and defects that are unique to each microcontroller or a flash memory segment within a microcontroller. The article explores threshold voltage variation in NOR flash memory cells for generating fingerprints and describes an algorithm for extracting fingerprints. The experimental evaluation utilizing a family of commercial microcontrollers demonstrates that the proposed technique is cost-effective, robust, and resilient to changes in voltage and temperature as well as to aging effects.more » « less
-
Approximate computing (AC) leverages the inherent error resilience and is used in many big-data applications from various domains such as multimedia, computer vision, signal processing, and machine learning to improve systems performance and power consumption. Like many other approximate circuits and algorithms, the memory subsystem can also be used to enhance performance and save power significantly. This paper proposes an efficient and effective systematic methodology to construct an approximate non-volatile magneto-resistive RAM (MRAM) framework using consumer-off-the-shelf (COTS) MRAM chips. In the proposed scheme, an extensive experimental characterization of memory errors is performed by manipulating the write latency of MRAM chips which exploits the inherent (intrinsic/extrinsic process variation) stochastic switching behavior of magnetic tunnel junctions (MTJs). The experimental results, involving error-resilient image compression and machine learning applications, reveal that the proposed AC framework provides a significant performance improvement and demonstrates a reduction in MRAM write energy of ~47.5% on average with negligible or no loss in output quality.more » « less
-
As interest in metadata-hiding communication grows in both research and practice, a need exists for stronger abuse reporting features on metadata-hiding platforms. While message franking has been deployed on major end-to-end encrypted platforms as a lightweight and effective abuse reporting feature, there is no comparable technique for metadata-hiding platforms. Existing efforts to support abuse reporting in this setting, such as asymmetric message franking or the Hecate scheme, require order of magnitude increases in client and server computation or fundamental changes to the architecture of messaging systems. As a result, while metadata-hiding communication inches closer to practice, critical content moderation concerns remain unaddressed. This paper demonstrates that, for broad classes of metadata-hiding schemes, lightweight abuse reporting can be deployed with minimal changes to the overall architecture of the system. Our insight is that much of the structure needed to support abuse reporting already exists in these schemes. By taking a non-generic approach, we can reuse this structure to achieve abuse reporting with minimal overhead. In particular, we show how to modify schemes based on secret sharing user inputs to support a message franking-style protocol. Compared to prior work, our shared franking technique more than halves the time to prepare a franked message and gives order of magnitude reductions in server-side message processing times, as well as in the time to decrypt a message and verify a report.more » « less
An official website of the United States government

