skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: On the principles of Parsimony and Self-consistency for the emergence of intelligence
Award ID(s):
2031899
PAR ID:
10432078
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers of Information Technology & Electronic Engineering
Volume:
23
Issue:
9
ISSN:
2095-9184
Page Range / eLocation ID:
1298 to 1323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We study the p-rank stratification of the moduli space of cyclic degree ! covers of the projective line in characteristic p for distinct primes p and !. The main result is about the intersection of the p-rank 0 stratum with the boundary of the moduli space of curves. When ! = 3 and p ≡ 2 mod 3 is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type (r,s), and p-rank f satisfying the clear necessary conditions. 
    more » « less
  2. null (Ed.)
    In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent “grayness” blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries. 
    more » « less
  3. Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} . 
    more » « less
  4. Abstract The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyof the neutron stars’ radii. 
    more » « less