skip to main content


Title: Field tunable magnetic transitions of CsCo 2 (MoO 4 ) 2 (OH): a triangular chain structure with a frustrated geometry
The sawtooth chain compound CsCo 2 (MoO 4 ) 2 (OH) is a complex magnetic system and here, we present a comprehensive series of magnetic and neutron scattering measurements to determine its magnetic phase diagram. The magnetic properties of CsCo 2 (MoO 4 ) 2 (OH) exhibit a strong coupling to the crystal lattice and its magnetic ground state can be easily manipulated by applied magnetic fields. There are two unique Co 2+ ions, base and vertex, with J bb and J bv magnetic exchange. The magnetism is highly anisotropic with the b -axis (chain) along the easy axis and the material orders antiferromagnetically at T N = 5 K. There are two successive metamagnetic transitions, the first at H c 1 = 0.2 kOe into a ferrimagnetic structure, and the other at H c 2 = 20 kOe to a ferromagnetic phase. Heat capacity measurements in various fields support the metamagnetic phase transformations, and the magnetic entropy value is intermediate between S = 3/2 and 1/2 states. The zero field antiferromagnetic phase contains vertex magnetic vectors (Co(1)) aligned parallel to the b -axis, while the base vectors (Co(2)) are canted by 34° and aligned in an opposite direction to the vertex vectors. The spins in parallel adjacent chains align in opposite directions, creating an overall antiferromagnetic structure. At a 3 kOe applied magnetic field, adjacent chains flip by 180° to generate a ferrimagnetic phase. An increase in field gradually induces the Co(1) moment to rotate along the b -axis and align in the same direction with Co(2) generating a ferromagnetic structure. The antiferromagnetic exchange parameters are calculated to be J bb = 0.028 meV and J bv = 0.13 meV, while the interchain exchange parameter is considerably weaker at J ch = (0.0047/ N ch ) meV. Our results demonstrate that the CsCo 2 (MoO 4 ) 2 (OH) is a promising candidate to study new physics associated with sawtooth chain magnetism and it encourages further theoretical studies as well as the synthesis of other sawtooth chain structures with different magnetic ions.  more » « less
Award ID(s):
2219129
PAR ID:
10432404
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Chemistry Frontiers
Volume:
7
Issue:
6
ISSN:
2052-1537
Page Range / eLocation ID:
1058 to 1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The paper presents the hydrothermal synthesis, magnetic properties, and magnetic structure characterization of K2Co3(MoO4)3(OH)2half sawtooth chains.

     
    more » « less
  2. Amorphous magnetic alloys with large perpendicular magnetic anisotropy (PMA) have emerged as a suitable material choice for spintronic memory and high-frequency non-reciprocal devices on-chip. Unlike ferromagnets, ferrimagnets offer faster switching dynamics, lower net saturation magnetization, minimal stray field and a lower net angular momentum. Ferrimagnetic thin films of Gd x Co 1− x sputter deposited as heterostructures of Ta/Pt/Gd x Co 1− x (t)/Pt on Si/SiO 2 have bulk-like PMA for thicknesses of 5–12 nm and room-temperature magnetic compensation for x = 28–32%. Preferential oxygenation of GdCo has been found to increase the effective anisotropy energy density by an order of magnitude and produce near-ideal remanence ratios. X-ray photoelectron spectroscopy accurately quantifies the metal-oxidation ratio, which shows that an oxygen-rich and Co-deficient stoichiometry (Gd 21 Co 28 O 51 ) likely weakens the ferromagnetic exchange interaction between Co–Co and contributes additional antiferromagnetic exchange through superexchange-like interactions between Gd and Co via O, resulting in a stronger out-of-plane magnetization. Even greater PMA and giant-anisotropy field of 11 kOe are achieved in super-lattices of the Gd 21 Co 28 O 51 heterostructure. The combination of ferrimagnetic ordering in amorphous Gd x Co 1− x and its affordance of pathways for engineering large PMA will enable the design of integrated high-frequency devices beyond 30 GHz and ultrafast energy efficient memory devices with switching speeds down to tens of picoseconds. 
    more » « less
  3. Abstract

    Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagneticTNwhile simultaneously enhancing the ferrimagneticTCby exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances bothTCandTNwith a growth rate of 74.4 K GPa−1and 14.4 K GPa−1respectively. Pressure unifies the dual metamagnetic transitions as illustrated throughp-Hphase diagrams at 140 and 200 K. Temperature-field-pressure (T-H,T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr= 246 K,Hcr= 23.3 kOe) and (Tcr= 435.8 K,pcr= 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure aroundTcrand a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application ofHandp.

     
    more » « less
  4. Neutron powder diffraction (NPD) and x-ray magnetic circular dichroism (XMCD) spectroscopy are employed to investigate the magnetism and spin structure in single-phase B20 Co1.043Si0.957. The magnetic contributions to the NPD data measured in zero fields are consistent with the helical order among the allowed spin structures derived from group theory. The magnitude of the magnetic moment is (0.3 ± 0.1) μB/Co according to NPD, while the surface magnetization probed by XMCD at 3 kOe is (0.18–0.31) μB/Co. Both values are substantially larger than the bulk magnetization of 0.11 μB/Co determined from magnetometry at 70 kOe and 2 K. These experimental data indicate the formation of a helical spin phase and the associated conical states in high magnetic fields.

     
    more » « less
  5. Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe 2 O 4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe 2 O 4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe 2 O 4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH) 2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe 2 O 4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe 2 O 4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe 2 O 4 HNCs are discussed herein. 
    more » « less