skip to main content


Title: Magnetic moments and spin structure in single-phase B20 Co 1+x Si 1−x (x = 0.043)

Neutron powder diffraction (NPD) and x-ray magnetic circular dichroism (XMCD) spectroscopy are employed to investigate the magnetism and spin structure in single-phase B20 Co1.043Si0.957. The magnetic contributions to the NPD data measured in zero fields are consistent with the helical order among the allowed spin structures derived from group theory. The magnitude of the magnetic moment is (0.3 ± 0.1) μB/Co according to NPD, while the surface magnetization probed by XMCD at 3 kOe is (0.18–0.31) μB/Co. Both values are substantially larger than the bulk magnetization of 0.11 μB/Co determined from magnetometry at 70 kOe and 2 K. These experimental data indicate the formation of a helical spin phase and the associated conical states in high magnetic fields.

 
more » « less
Award ID(s):
1557417 2044049
NSF-PAR ID:
10366819
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
18
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 183902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The quinary members in the solid solution Hf2Fe1−δRu5−xIrx+δB2(x=1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx=1 and 3 and the highest forx=2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (TN=55–70 K) found at low magnetic fields changed to ferromagnetic (TC=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc=74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x=1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials.

     
    more » « less
  2. The sawtooth chain compound CsCo 2 (MoO 4 ) 2 (OH) is a complex magnetic system and here, we present a comprehensive series of magnetic and neutron scattering measurements to determine its magnetic phase diagram. The magnetic properties of CsCo 2 (MoO 4 ) 2 (OH) exhibit a strong coupling to the crystal lattice and its magnetic ground state can be easily manipulated by applied magnetic fields. There are two unique Co 2+ ions, base and vertex, with J bb and J bv magnetic exchange. The magnetism is highly anisotropic with the b -axis (chain) along the easy axis and the material orders antiferromagnetically at T N = 5 K. There are two successive metamagnetic transitions, the first at H c 1 = 0.2 kOe into a ferrimagnetic structure, and the other at H c 2 = 20 kOe to a ferromagnetic phase. Heat capacity measurements in various fields support the metamagnetic phase transformations, and the magnetic entropy value is intermediate between S = 3/2 and 1/2 states. The zero field antiferromagnetic phase contains vertex magnetic vectors (Co(1)) aligned parallel to the b -axis, while the base vectors (Co(2)) are canted by 34° and aligned in an opposite direction to the vertex vectors. The spins in parallel adjacent chains align in opposite directions, creating an overall antiferromagnetic structure. At a 3 kOe applied magnetic field, adjacent chains flip by 180° to generate a ferrimagnetic phase. An increase in field gradually induces the Co(1) moment to rotate along the b -axis and align in the same direction with Co(2) generating a ferromagnetic structure. The antiferromagnetic exchange parameters are calculated to be J bb = 0.028 meV and J bv = 0.13 meV, while the interchain exchange parameter is considerably weaker at J ch = (0.0047/ N ch ) meV. Our results demonstrate that the CsCo 2 (MoO 4 ) 2 (OH) is a promising candidate to study new physics associated with sawtooth chain magnetism and it encourages further theoretical studies as well as the synthesis of other sawtooth chain structures with different magnetic ions. 
    more » « less
  3. Abstract

    Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1−xPtx, which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1−xPtx/Fe0.6Co0.2B0.2interface when compared to that at Ta/Fe0.6Co0.2B0.2or W/Fe0.6Co0.2B0.2interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications.

     
    more » « less
  4. Abstract

    Magnetic skyrmions are topologically protected spin textures that are being investigated for their potential use in next generation magnetic storage devices. Here, magnetic skyrmions and other magnetic phases in Fe1−xCoxGe (x< 0.1) microplates (MPLs) newly synthesized via chemical vapor deposition are studied using both magnetic imaging and transport measurements. Lorentz transmission electron microscopy reveals a stabilized magnetic skyrmion phase near room temperature (≈280 K) and a quenched metastable skyrmion lattice via field cooling. Magnetoresistance (MR) measurements in three different configurations reveal a unique anomalous MR signal at temperatures below 200 K and two distinct field dependent magnetic transitions. The topological Hall effect (THE), known as the electronic signature of magnetic skyrmion phase, is detected for the first time in a Fe1−xCoxGe nanostructure, with a large and positive peak THE resistivity of ≈32 nΩ cm at 260 K. This large magnitude is attributed to both nanostructuring and decreased carrier concentrations due to Co alloying of the Fe1−xCoxGe MPL. A consistent magnetic phase diagram summarized from both the magnetic imaging and transport measurements shows that the magnetic skyrmions are stabilized in Fe1−xCoxGe MPLs compared to bulk materials. This study lays the foundation for future skyrmion‐based nanodevices in information storage technologies.

     
    more » « less
  5. Abstract

    The first structurally characterized hexafluorido complex of a tetravalent actinide ion, the [UF6]2−anion, is reported in the (NEt4)2[UF6]⋅2 H2O salt (1). The weak magnetic response of1results from both UIVspin and orbital contributions, as established by combining X‐ray magnetic circular dichroism (XMCD) spectroscopy and bulk magnetization measurements. The spin and orbital moments are virtually identical in magnitude, but opposite in sign, resulting in an almost perfect cancellation, which is corroborated by ab initio calculations. This work constitutes the first experimental demonstration of a seemingly non‐magnetic molecular actinide complex carrying sizable spin and orbital magnetic moments.

     
    more » « less